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The screened Coulomb (Yukawa or Debye–H¨uckel) potential,8= exp(−κr )/r ,
wherer is the separation distance andκ is the Debye–H¨uckel screening parameter,
gives a good description of the electrostatic interactions in a variety of biologically
and physically important charged systems. It is well known that the direct calcu-
lation of the energy and forces due to a collection ofN charged particles involves
the pairwise summation of all charged particle interactions and exhibits anO(N2)

computational complexity which severely restricts maximum problem size. This
has prompted the development of fast summation algorithms that allow the elec-
trostatic energy and forces to be obtained in onlyO(N log N) operations. To date,
however, practically all such implementations have been limited exclusively to pure
Coulombic potentials (κ = 0), and the central contribution of the present method
is to extend this capability to the entire range of the inverse Debye length,κ ≥ 0.
The basic formulation and computational implementation of the spherical modified
Bessel function-based multipole expansions appropriate for the screened Coulomb
kernel are first presented. Next, a simple model system consisting of a single source
charged particle is studied to show that the maximum electrostatic energy error in-
curred by anM-order multipole expansion for the Yukawa potential is bounded
above by the error of the equivalent multipole expansion for the Coulombic po-
tential. Finally, timing and accuracy studies are presented for a variety of charged
systems including polyelectrolyte chains, random distributions of charges inside a
cube, and face-centered-cubic lattice charge configurations containing up to 103,823
charges. c© 1999 Academic Press
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1. INTRODUCTION

Electrostatic interactions play a major role in many molecular systems, and considerable
effort is being devoted to the accurate and efficient computer modeling of large-scale physi-
cally realistic charged systems. Because of their long-range nature, all interactions between
charged particles must be accounted for so that the exact calculation of the electrostatic
energy and forces by direct summation requiresO(N2) operations. To alleviate this high
computational burden, much research has been directed toward the development of so-called
fast summation methods which combine hierarchical grouping procedures and multipole
expansion approximations to realizeO(N log N) operation counts [23, 26, 27]. To date,
such methods have been limited to systems governed by pure Coulombic potentials. Many
molecular systems of biological and physical significance, however, are governed by the
screened Coulomb (also called the Debye–H¨uckel or Yukawa) potential. Fast summation
methods are not currently available for charged systems governed by the Yukawa poten-
tial, and the focus of the present paper is to formulate and implement a new fast adaptive
multipole algorithm suitable for such systems.

The total screened Coulomb electrostatic energy of a system containingN charged par-
ticles, is given by

Ue = 1

ε

N∑
i=1

i−1∑
j=1

qi qj

r i j
e−κri j , (1)

whereκ is the Debye–H¨uckel screening parameter (which is proportional to the square root
of the ionic strength of the solution),qi is the charge of particlei, ε is the dielectric constant
of the solvent, andri j is the separation distance between particlesi and j . Equation (1)
characterizes problems where electrostatic interactions are attenuated by a background ionic
medium. Whenκ = 0, this expression reverts to the form for pure Coulombic interactions.
It should be noted that Eq. (1) describes the solvent solely by its dielectric constant (i.e.,
dielectric continuum approximation) and the screening effect of the ionic species in solution
by the exponential term (e−κr ). Hereafter the direct summation of allN(N− 1)/2 pairwise
electrostatic interactions in Eq. (1) will be termed the “direct summation method.”

The screened Coulombic potential, exp(−κr )/r , has been extensively used to model
intermolecular/intramolecular electrostatic interactions in a wide range of physical and
macromolecular systems such as charge-stabilized colloids [48, 57], weakly charged poly-
electrolytes [11, 29, 62], lattice polyelectrolytes [2], dendritic polyelectrolytes [65], biopoly-
electrolyte DNA [21, 51], ionic micellar solutions [67], and colloidal (dusty) plasmas [28,
59]. The study of Yukawa systems usually involves Monte Carlo (MC) or molecular dy-
namics (MD) simulations [2, 19, 33, 63] where the screened Coulombic energy and/or
forces are repeatedly evaluated subject to free or periodic boundary conditions. The most
computationally demanding aspect of these MC/MD simulations is the direct evaluation of
the long-range electrostatic potential energy and/or forces which exhibitO(N2) computa-
tional complexity. Of course, the same is true for MC/MD simulations of charged systems
governed by the Coulombic potential.

The boundary element-based solution to the linear Poisson–Boltzmann equation (PBE)
is also subject to theO(N2) behavior due to the mutual screened Coulombic interactions
between allN boundary elements [32, 34, 68]. Despite being more accurate than finite-
difference-based methods, the boundary element formulation of the linear PBE is not widely
used in biomolecular applications due to both CPU and memory demands.
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Due to the high costs associated with the direct computation of the electrostatic energy
and forces and the importance of large-scale computer simulations of molecular systems,
considerable effort has been devoted to developing particle–mesh approaches and tree-based
fast multipole methods (FMMs) for solvingN-body electrostatic problems, and there now
exist numerous, highly efficientO(N log N) and O(N) implementations for calculating
Coulombicinteractions in both nonperiodic (i.e., isolated systems) and periodic charged
systems [6, 8, 12, 15, 18, 22, 23, 27, 37, 38, 53, 66]. For a comparison of the FMM and
particle–mesh-based approaches the reader is referred elsewhere [43, 60].

In a particle–mesh-based approach, the collection of charges is essentially replaced by
a smoothed charge distribution which may be accurately represented upon a regular mesh.
The electrostatic potential due to this smoothed distribution is developed by transforming
the problem into frequency space using fast Fourier transforms (FFTs) upon the regular
mesh. ForM grid points the FFT is accomplished inO(M log M) operations, which, if
M log M¿ N2, allows CPU reductions to be realized. The potentials induced by a charged
particle and its smoothed analogue at a distant point are virtually indistinguishable. For
closer (near-field) evaluations, however, the potentials differ markedly and local correc-
tions must be applied to restore global accuracy. Particle–mesh algorithms are attractive
because of the straightforward coding requirements and their smooth numerical behavior,
which is conducive to deterministic optimization studies. For problems involving volu-
metric charge distributions that fill the computational domain, particle–mesh algorithms
are computationally most effective. Thus, the particle–mesh-based approach for the Ewald
sum [12, 14, 18] in molecular dynamics of charged systems that invoke periodic boundary
conditions is now widely used in large-scale biomolecular simulations [9, 31, 56, 69].

On the other hand, when studying systems where the charges or active elements are
distributed upon surfaces (this is commonly the case in boundary element treatments) or
along chains (e.g., polyelectrolyte modeling), performance is likely to degrade. This is
because the smoothed problem is still solved upon a full 3D regular mesh, which implies
high storage penalties and costs in evaluating the FFTs (i.e., the requirementM log M¿ N2

becomes more difficult to satisfy). In such problems, FMM techniques are likely to prove
more efficient because of the adaptive mesh and hierarchical groupings made possible using
octrees.

The fast multipole algorithm developed by Greengard and Rokhlin, which combines the
hierarchical grouping of particles with truncated multipole expansion and local Taylor series
expansion for the Coulombic potential, was originally developed for 2D charged systems
[26, 27]. Spherical harmonics-based fast multipole algorithms were subsequently extended
to accommodate both nonperiodic and periodic 3D Coulombic systems [8, 24, 27, 43, 53].
Many different variants of the FMM, including Cartesian-based versions [15, 55], parallel
implementations [6, 35], and other efficient implementations, are now available [10, 16, 25,
30, 47, 66]. Some groups have used the fast multipole algorithm in large-scale molecular
dynamics simulations (e.g., see [4, 39]).

Recently,fastboundary element methods (BEMs) have been developed for solving the
Poisson equation (zero ionic strength) for large solvated molecules of arbitrary shapes
[3, 44, 70]. In these approaches the fast multipole algorithm for the Coulombic potential is
employed to reduce both calculation time and memory demands. Comparable reductions
in computational costs can be anticipated in afast BEM implementation for the linear
Poisson–Boltzmann equation (PBE). To date, such an implementation has not been realized,
however, due to the lack of a fast multipole approximation for the screened Coulombic
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potential. A fast boundary element solution of the linear PBE will make it more appealing,
especially when coupled to molecular dynamics algorithms for large-scale biomolecular
systems.

While FMM and particle–mesh methods are well developed for electrostatic systems
governed by the Coulombic potential, no corresponding fast methods are yet available for
the Yukawa potential. Hence, computer simulation studies involving this potential have been
limited to small systems and employ potential cutoffs to maintain reasonable computational
costs [7, 19, 46, 58, 61, 62]. Also, in simulations of supercoiled polyelectrolyte DNA the
individual phosphate groups are replaced by charged segments (containing 60 or more
phosphate groups), which interact throughapproximateelectrostatic pair potentials (e.g.,
hard-sphere with ionic strength dependent diameter or screened Coulomb) [13, 40, 51, 64]
in order to reduce computational costs.

The development of a fast adaptive multipole algorithm for the screened Coulombic po-
tential is therefore crucial to the accurate and computationally efficient modeling of a variety
of large-scale Yukawa systems and in the BEM solution of the linear Poisson–Boltzmann
equation. In a short communication [36], a parallel FMM algorithm for the Yukawa poten-
tial claims to have been developed, but no details of the formulation and implementation are
given. An approximate fast adaptive multipole algorithm for the calculation of the Yukawa
energy was developed [20] where the(1/r ) term was expanded in the conventional manner
using a formal Gegenbauer polynomial expansion. To account for ion screening, near-field
interactions were treated exactly using Eq. (1) and far-field interactions were simply scaled
by e−κr , wherer is the distance between the expansion point of the inducing group and the
evaluation location (either the center of another group or an individual particle). Order of
magnitude reductions in CPU times were realized for large (N= 104) charged systems, and
comparison against exact results showed good accuracy (1% energy errors or less). Qualita-
tively, for smallκ, the approximation approaches the Coulombic limit with its well-known
accuracy bounds; for largeκ, the exponential scaling term dominates beyond a certain range
and the higher order multipole terms become less relevant. Though capturing the dominant
behavior, this previous approach remains essentially a first-order method where the higher
order (dipole, quadrupole, etc.) terms only improve convergence when the product,κr , is
small. For largeκr , error control is only possible by extending the near-field region.

It is possible to derive a convergent multipole approximation by expanding(e−κr )/r
as a formal multi-dimensional Taylor series. Unfortunately, asκr increases so does the
number of terms required for convergence of the multipole approximation. This behavior
is due to the poor convergence of the Taylor series representation of exp(−x) for large
x. To accommodate the screened Coulombic potential, a completely different multipole
expansion is warranted. The appropriate multipole expansion is here expressed in terms
of spherical modified Bessel functions (SMBFs), the properties of which have been well
studied, and for which useful recursion and integral relationships are available. Moreover,
the products formed by combining these functions with the spherical harmonics used to
describe angular variations can be expressed in terms of minimal polynomials, thereby
avoiding the need to convert between Cartesian and spherical coordinates. These products
are also amenable to simple recursion relations which facilitate generation of higher order
multipoles and formation of spatial gradients.

The layout of the paper is as follows. In the next section (Section 2), the formula-
tion and manipulation of the new SMBF-based method for the Yukawa potential and
its gradients are described. Section 3 describes the computer implementation of the fast
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adaptive SMBF-based multipole algorithm for the screened Coulombic potential. In Sec-
tion 4, results are presented illustrating the accuracy of the new SMBF-based multipole
expansion for a simple model problem that consists of a single pair of unit positive charges.
Timing and accuracy results are also shown for large-scale molecular test systems over
a broad range of the Debye–H¨uckel screening parameter. The molecular systems studied
include isolated open linear polyelectrolyte chains, chains of supercoiled and knotted poly-
electrolyte DNA, a random distribution of charges inside a cube and a face-centered-cubic
(fcc) lattice configuration of charges in aqueous NaCl solutions. Finally, concluding remarks
and suggestions for further work are presented in Section 5. Some of the more technical
material referred to in the text appears in the appendixes.

2. FAST EVALUATION OF YUKAWA ENERGY AND FORCES

As noted above, the evaluation of the Debye–H¨uckel potential energy and forces us-
ing direct summation entails anO(N2) operation count due to the long-range interactions
between allN charged particles. To reduce this bottleneck, one appeals to fast multipole
methods which combine two basic components to reduce the operation count toO(N log N)
or O(N). The first is a hierarchical grouping procedure that assembles the active elements
(e.g., charges) into nested groups of specified size. Because of their ability to readily ac-
commodate arbitrary nonuniform charged particle distributions, the adaptive data structures
known as octrees [50] are used for this purpose. The second component, which is the pri-
mary subject of the present paper, is a multipole approximation to the electrostatic potential
and forces induced by a collection of charged particles at sufficiently well-separated, far-
field points. The remaining near-field interactions are computed in the conventional manner
using direct summation.

To derive a multipole expansion for the screened Coulombic potential valid for allκ ≥ 0,
consider (see Fig. 1) a charged source particle located at position,ρ

¯
, and an observation

point,R
¯

(vector quantities are denoted by an underbar). The relative position vector between
the source and observation point isr

¯
= R

¯
− ρ

¯
and the distance,r = | r

¯
|. By expressing the

position vectors in spherical coordinates, i.e.,ρ
¯
(ρ, θ, φ) and R

¯
(R, α, β), a well-known

multipole expansion for the Debye–H¨uckel potential valid forR>ρ is given by [1]

8(r, κ) = e−κr

r
= 8κ

∞∑
m=0

Î m+1/2(κρ)K̂ m+1/2(κR)
m∑

k=−m

Ymk(θ, φ)Y
∗
mk(α, β). (2)

The Ymk are the same spherical harmonics employed in the multipole expansion for the
Coulombic potential. The asterisk denotes the complex conjugate, and the spherical

FIG. 1. Schematic showing the location of source and field points relative to the origin of the coordinate
system.
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modified Bessel functions of the first and third kind are defined as

Î m+1/2(x) ≡
√
π

2x
Im+1/2(x), K̂ m+1/2(x) ≡

√
π

2x
Km+1/2(x), (3a, b)

where Im+1/2(x) and Km+1/2(x) are the corresponding conventional (i.e., not spherical)
modified Bessel functions of the first and third kinds, respectively. Useful properties of
these functions include [1]:

(i) closed form expression in terms of polynomials and an exponential;
(ii) desirable asymptotic behavior for small argument,x:

Î m+1/2(x) ∼ xm

1 · 3 · 5 · · · (2m+ 1)
, K̂ m+1/2(x) ∼ π

2

1 · 3 · 5 · · · (2m− 1)

xm+1
, (4a, b)

(iii) efficient evaluation using recurrence relationships among functions of different
order.

Because of this last property, only a single exponentiation is required to computeÎ m+1/2 or
K̂ m+1/2 for all orders,m≥ 0, and hence to evaluate the entire multipole expansion atR

¯
.

It is computationally expedient to rescale and combine terms by first defining

gm(x) ≡ 1 · 3 · · · (2m+ 1)

xm
Î m+1/2(x), Gm(x) ≡ 2

π

xm+1

1 · 3 · · · (2m− 1)
K̂ m+1/2(x)

(5a, b)

9mk(ρ
¯
) = ρmYmk(θ, φ)

Cmk
, ψmk(R¯

) = 4π

2m+ 1

CmkYmk(α, β)

Rm+1
(6a, b)

Cmk =
√
(2m+ 1)(m− k)!(m+ k)!

4π
(6c)

and then substituting Eqs. (5) and Eqs. (6) into Eq. (2) to obtain

e−κr

r
=
∞∑

m=0

gm(κρ)Gm(κR)
m∑

k=−m

9mk(ρ
¯
)ψ∗mk(R¯

). (7)

This rearrangement is useful in several respects. First, the expansion remains well behaved
whenκ→ 0. Then, the small argument behavior of the SMBFs (Eqs. (4a, b) and (5a, b))
reveals

lim
κ→0

e−κr

r
= 1

r
=
∞∑

m=0

m∑
k=−m

9mk(ρ
¯
)ψ∗mk(R¯

), (8)

so that the multipole expansion for the Coulombic potential is recovered. This analytical
result is also easily reproduced numerically using the rapidly convergent and stable (with
respect to round-off) small argument representations ofgm andGm. The rescalings for the
spherical harmonic functions, Eqs. (6), are motivated by the simplified integral expressions
for9mk andψ∗mk, which facilitate development of recursion relationships and evaluation of
these functions in Cartesian coordinates (see Appendix A). More importantly, from a com-
putational viewpoint, robust evaluation of the functionsgm andGm is readily accomplished
by slight modification of the SMBF recursion relationships [1].
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A useful property of the products,

Qmk(κ, R
¯
) = Gm(κR)ψ∗mk(R¯

), (9)

is that their spatial gradients can be expressed as linear combinations ofQmk of different
order and degree,

∇Qmk(κ, R
¯
) = [ A+mk]


Qm+1, k−1

Qm+1, k

Qm+1, k+1

+ [ A−mk]


Qm−1, k−1

Qm−1, k

Qm−1, k+1

 , (10)

where the two 3× 3 matrices, [A±mk] (see Eq. (13) in Appendix B), areindependentof
R
¯

(though functionally dependent uponm, k, andκ). The practical consequence of this
property is that derivatives of arbitrary order,K , can be readily developed by recursive
application of this last relation (simply insert appropriate(K − 1)-order derivatives on the
right-hand side of Eq. (10)). This avoids cumbersome handling of multi-dimensional chain
products which would otherwise be required if the gradients of the termsGm(κR) andψ∗mk

(or K̂ m+1/2(κr ) andYmk) were developed separately.
Finally, the combinations9mk( r¯

) and r 2m+1ψ∗mk( r¯
) are bothm-order polynomials in

r
¯

. Hence, there is no need to transform to spherical coordinates in order to evaluate these
terms. Simple upward recursion relationships can be developed for9mk( r¯

) andψ∗mk( r¯
)

that entail essentially the same computational effort as evaluating the simplem-order
Cartesian moments. This is an important observation. Traditionally, multipole expansions
of the Coulombic potential have adopted either a Cartesian- or spherical-harmonics-based
framework. Key properties of these two approaches are summarized in Table 1. Operating
with the quantities9mk andψ∗mk results in an approach that combines the relative advan-
tages of the pure Cartesian or spherical harmonics representations without forfeiting any
desirable properties, as was recently demonstrated by White and Head-Gordon [66]. As in
the spherical-harmonics-based approach, multipole expansions to arbitrary order,M , can
be developed in a methodical manner and the associated multipole coefficients stored at the
minimal O(M2) cost. However, the square root and circular function evaluations required
in converting to spherical coordinates are eliminated. Moreover, local-to-local translation

TABLE 1

Comparison of Cartesian- and Spherical Harmonics-Based Multipole Expansions

Cartesian Spherical Harmonics

Translation ofM-order expansion,O(M3) Translation ofM-order expansion,O(M4)

using generalized parallel axis theorem

Storage forM-order expansion,O(M3) Storage forM-order expansion,O(M2)

No transcendental function evaluations needed At least one square root and one sine
(for Coulombic potential) operation invoked

Generalization to very high order cumbersome Arbitrary-order expansions available using
simple recursion rules

Difficult to develop arbitrary order derivatives Arbitrary-order derivatives developed using
simple recursion rules
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of the multipole coefficients is simply done by recursive application of the binomial theo-
rem along each Cartesian direction. The total cost to shift anM-order expansion is then
O(M3), as compared toO(M4) for the conventional approach where the shift is performed
along all three Cartesian directions simultaneously. Theoretically fasterO(M2) shifting
procedures can be effected using fast Fourier transforms and warping operations, but these
methods appear quite complicated, particularly if efficiency for low-order expansions is to be
preserved [16]. Finally, all spatial gradients ofψ∗mk can be written as linear combinations of
ψ∗m′k′ of different orders and degrees,m′ andk′; no chain product manipulation is necessary
to develop arbitrary-order derivatives. Additional details regarding the derivation of the pre-
ceding expressions and expressions for the spatial gradients are presented in the appendixes.

3. FAST ADAPTIVE MULTIPOLE ALGORITHM

3.1. Use of the Multipole Approximation in the Fast Algorithm

The basic reason for adopting the multipole decomposition is to expedite evaluation of
the long range influence of a localized collection of charges,qα. Summing over charges,α,
then from Eq. (7),

∑
α

qα
e−κ|R¯

−ρ
¯α
|

|R
¯
− ρ

¯α
| =

∑
α

qα

∞∑
m=0

gm(κρα)Gm(κR)
m∑

k=−m

9mk(ρ
¯α
)ψ∗mk(R¯

)

=
∞∑

m=0

m∑
k=−m

Qmk(κ, R
¯
)Bmk (11)

Bmk =
∑
α

qαgm(κρα)9mk(ρ
¯α
), (12)

whereQmk(κ, R
¯
) is defined in Eq. (9). This rearrangement implies that the multipole co-

efficients, Bmk, for the entire group can be computeda priori and independently from
the evaluation point. These coefficients can then be used to approximate the influence of
the group at any well-separated evaluation point satisfyingR> max(ρα). Therefore, to
implement a fast algorithm, one first assembles the interacting elements into a series of hi-
erarchical groups using an octree-based decomposition. The multipole coefficients,Bmk, for
all groups are then computed by direct summation over charged particles and subsequently
used to evaluate all well-separated interactions. Evaluation of the near-field interactions
completes the summation procedure.

In the fast implementation of Coulombic interactions, it is usual to first assemble the mul-
tipole coefficients upon the finest level (terminal) nodes in the octree by direct summation
of individual charges. The multipole coefficients for coarser level nodes are then developed
from their finer level counterparts by using shifting theorems or so-called inner-to-inner
translation operators rather than by summing over the contained particles. Although this
reduces the formal complexity of the multipole construction process fromO(N log N) to
O(N), it does not procure significant CPU advantages since the construction of multipole
coefficients constitutes a small fraction of total computation time which is dominated by the
near-field evaluations and multipole approximation evaluations. When considering the mul-
tipole expansions developed for screened Coulombic potentials, the translation operators
are considerably more complex and computationally expensive. For example, comparable
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translation operators have been developed for the imaginary argument exponential kernel,
exp(−ikr )/r [17, 45, 47]. In the present implementation, the multipole coefficients are
computed individually for each box by summing over individual particles. Examination of
the CPU times expended in the multipole coefficient construction process has shown them
to be insignificant when compared to total calculation times.

A Taylor series approximation can also be invoked to reduce the formal complexity of
the algorithm fromO(N log N) to only O(N) (this estimate ignores octree construction
which remainsO(N log N) but usually requires negligible CPU time). The basic idea is to
extrapolate or project far-field electrostatic contributions that have been accumulated for a
parent group to each of its immediate descendant groups or, if no such groups exist, to the
individual elements contained in the group. Denote by vectorb

¯
the relative position between

the centers of a pair of nested groups or between an individual charge and the center of the
group it is contained in and consider the evaluation of Eq. (11) at locationR

¯
+ b

¯
, where

|R
¯
+ b|̄> max(ρα) andb< R. Under these conditions, each of the terms in the expansion,

Eq. (11), can be approximated by a truncated Taylor series,

Qmk(κ, R
¯
+ b

¯
) ∼= Qmk(κ, R

¯
)+ b

¯
· ∂
∂R

¯

Qmk(κ, R
¯
)+ 1

2
b
¯
·
[
∂2

∂R
¯

2
Qmk(κ, R

¯
)

]
· b
¯
+ · · · , (13)

where the successive gradients are obtained using Eq. (10).
It should be pointed out that in order to preserve the improved convergence behavior af-

forded by the SMBF-based multipole expansion, the Taylor series extrapolation procedures
should be replaced with multipole translation operators which are more efficient (when
using diagonal forms of these operators [17, 45, 47]) and more accurate forκ|b|̄À1. In
the Coulombic case there is a close correspondence between the multipole and Taylor se-
ries approximations. Both the multipole coefficients and the translation operators used to
shift the expansions downward from coarser to finer level boxes can be formally derived
from a multi-dimensional Taylor series representation of the 1/r kernel. For the screened
Coulombic potential, the Taylor series converges very slowly forκRÀ 1, which motivated
the SMBF-based multipole expansion in the first place. For similar reasons, translation
operators for SMBF-based multipole expansions are likely to converge more uniformly
with κ than the Taylor series extrapolation procedures described above. Such translation
operators can be derived using the same procedures developed for FMM solutions to the
3D Helmholtz [17, 45, 47]. This has not yet been implemented, however, and the current
Taylor series-based extrapolation may exhibitκ-dependent convergence behavior, though
in the cases considered, the actual errors have remained quite small. An option is available
to dispense with the Taylor series extrapolation and perform the analysis using only the
multipole approximation applied to the individual evaluation points. The resulting opera-
tion count forN particles is thenO(N log N), which still constitutes a “fast algorithm,”
and the error can be fully controlled by adjusting the order of the multipole expansion. In
practice, the computation time for theO(N log N) algorithm increases by approximately a
factor of 2 to 4.

3.2. Construction of Groups

The final remaining issue is how to form the groups and distinguish between near- and
far-field interactions. In this regard, the fast algorithm closely resembles established fast
adaptive multipole methods using octree decompositions. Beginning with a single cube
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encompassing the domain of interest, particles are inserted in succession. At any point, the
octree consists of a hierarchy of cubes or boxes obtained by recursively dividing the original
cube. As a new particle is inserted, one first conducts a downward search through the octree
to establish the terminal (smallest) box,ib, containing the particle. If, upon addition of the
new particle, the total number of particles within this cube exceeds a specified threshold,
the cube is divided into eight “child” boxes and the particles contained inib are reassigned
to the newly created boxes. This procedure continues until all particles have been inserted.

Five types of interactions are possible between a pair of boxes according to the com-
binations of multipole and/or Taylor series approximations that may be invoked. IfLs is
a separation parameter used to distinguish between near-/far-field regions;ds anddf are
the side lengths of the source (inducting) and field (observation) boxes, respectively; and
Ds f is the separation distance between the source and field boxes (i.e., the smallest dis-
tance between the perimeters of these boxes), then five different interaction types may be
distinguished:

(i) direct interaction: interactions between particles in these boxes must be summed
directly;

(ii) multipole expansion only:Lsds≤ Ds f < Lsdf ;
(iii) Taylor series expansion only:Lsdf ≤ Ds f < Lsds;
(iv) both multipole and Taylor series expansions:Ds f ≥ Ls max{df , ds};
(v) no interaction: the inducting effects were already contained within the interactions

between ancestors of the source and field boxes.

Figure 2 depicts these interaction types for the caseLs= 1.

3.3. Overall Assembly of Fast Energy and Force Calculation

The fast computation of the screened Coulombic energy,Ue, for a collection ofN charged
particles,i , is assembled as follows. First, an octree is developed about the configuration of
charged particles and used to define the hierarchical groups—each group is composed of the
particles in a particular box or cell of the octree. The pointer structures needed to identify

FIG. 2. Two-dimensional example illustrating the five types of interactions with a field box,F . Only terminal
(leaf ) boxes are shown andLs= 1 is assumed. The letters correspond to the interactions described in the text (See
Section 3.2).
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the particles contained in a given box are also developed at this stage. Next, the multipole
coefficients,Bmk, for each group are computed according to Eq. (12). This completes the
“upward” pass of the fast evaluation process.

The downward pass proceeds differently according to whether Taylor series extrapola-
tions are invoked or not during this stage. The search is simpler if no Taylor series extra-
polations are invoked. In this case, the total screened Coulombic energy is evaluated by
expressing

Ue = 1

2ε

N∑
i=1

qi ui (14)

and decomposing

ui =
∑
j 6=i

qj e−κri j

r i j

∼=
∑

j 6=i, j∈Ni

qj e−κri j

r i j
+
∑

jg

M∑
m=0

m∑
k=−m

Qmk(κ, R
¯i )(Bmk) jg, (15)

whereNi is the set of points,j , considered near-field to point,i , and jg are the far-field
groups containing the remaining points,j 6∈ Ni , whose contributions are evaluated using the
multipole approximation. Forces,f

¯
i =−(qi /ε)∂ui /∂R

¯i , may be similarly decomposed:

f
¯

i
∼= qi

∑
j 6=i, j∈Ni

qj e−κri j (1+ κri j )

εr 3
i j

(R
¯i − R

¯ j )− qi

ε

∑
jg

M∑
m=0

m∑
k=−m

∇Qmk(κ, R
¯i )(Bmk) jg

(16)

(note that the coefficients,Bmk, are treated as constants during the differentiation). The
evaluation of eachui and f

¯
i then entails a top-to-bottom search through the octree. Starting

with the root cell encompassing the entire domain, descendant cells,jg, are recursively
searched to see whether a multipole approximation may be applied. If so, the multipole
evaluation is made and the search through further descendants pruned at this cell. Otherwise,
the search continues through the descendants ofjg. If no further descendants exist, then the
contributions from the individual particles,j , in the cell are near-field and must be evaluated
directly.

When Taylor series extrapolation is invoked, a pre-order traversal [50, 54] of the octree
is carried out which ensures that every cell in the octree is visited before its subdivided de-
scendant cells. For each visited cell,ig, the tests of Section 3.2 are applied and the necessary
near- and/or far-field interactions carried out. If the cell contains further descendants, then
the accumulated contributions touig and f

¯
ig (Eqs. (15) and (16) evaluated at the center

of cell, ig) are transferred to the centers of these descendant cells using the Taylor series
extrapolation, Eq. (13). Otherwise, if cellig is terminal and has no descendants, then the
Taylor series extrapolation is applied to the individual particles contained in cellig. The
remaining near- and far-field interactions for these individual particles are then carried out,
thus completing the evaluation ofui and f

¯
i .

4. RESULTS AND DISCUSSION

4.1. Simple Test of the SMBF-Based Multipole Expansion

In order to assess the accuracy of the new SMBF-based multipole expansion, a simple
model problem containing a pair of unit charges is considered. The source charge is placed
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at unit radius,rs= 1, from the origin and the multipole coefficients about the origin are
computed. The fourth-order multipole expansion is then evaluated at a series of field points
located at different radial distances from the origin,r f . For each such radius,r f , the field
point vector is rotated (i.e., the spherical angles are varied) and the maximum relative ele-
ctrostatic energy error,

emax(r f ) = max
α,β

{
Emultipole(r f )− e−κr /r

1/r

}
, (17)

is recorded. Here,r = |R
¯ f − R

¯s| andα, β are the spherical angles of the field point. Note
that the electrostatic energy error is normalized by 1/r (the Coulombic potential), which is
more useful at largeκ since the screened Coulombic energy is then effectively short-range
and becomes negligible beyondr > 7/κ.

It is also of interest to study what transpires when one retains the conventional multipole
expansion for the Coulombic potential and simply scales this approximation by exp(−κr f ).
Referring to this as the “scaled Coulombic” approximation [20], one anticipates low errors
at both sufficiently small and sufficiently large values ofκ.

The variation inemax with r f andκ is depicted in Fig. 3. Note that the results from
the “scaled Coulombic” approximation (Fig. 3a) and SMBF-based multipole expansion
(Fig. 3b) are plotted on identical scales. As shown in Fig. 3a, for the “scaled Coulombic”
approximation, the relative electrostatic energy error is seen to increase rapidly withκ and to
persist well into the far-field regionr f > rs. The maximum relative electrostatic energy error
occurs roughly in the range 0.5<κ <0.7; beyond this range the electrostatic energy error
decays rapidly withr f . In contrast, the results obtained using the SMBF-based multipole
expansion exhibit much tighter energy error control at allκ (see Fig. 3b). It is evident that
all relative electrostatic energy errors lie below the curve corresponding toκ = 0 so that,
unlike the previous case, the relative electrostatic energy error reduces monotonically with
both r f andκ. A corollary is that useful error bounds can be developed for the present
approximation based upon the well-known results for the Coulombic case. In particular,
the estimate for the maximum error in a pure CoulombicM-order multipole expansion,
emax∼ (rs/r f )

M+1, carries over to the SMBF-based multipole approximation. Though not
shown here, it can also be demonstrated that the maximum relative electrostatic energy
error decays rapidly with the order of the multipole expansion,M , which can therefore
be used as means of controlling overall solution tolerance. The improved and predictable
convergence behavior of the SMBF-based multipole expansion for allκ ≥ 0 favors its use for
the calculation of screened Coulombic electrostatic interactions in large molecular charged
systems.

4.2. Performance and Accuracy of the Fast Adaptive Multipole Algorithm

The computational performance of the new fast adaptive multipole algorithm (imple-
mented in FORTRAN 77) was examined for several model finite systems involving both
uniform and nonuniform charge distributions and different salt concentrations. The sys-
tems studied include interwound, knotted, and lobed DNA configurations [51, 52], and
open linear polyelectrolyte chains containing up to 10,000 charged particles. Also, a face-
centered-cubic lattice configuration of unit charges with a fixed reduced density of 0.7
was considered. Finally, computational studies involving up to 103,823 charged particles
randomly distributed inside a cube were performed.
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FIG. 3. Variation of the maximum relative electrostatic energy error,emax (defined in Eq. (17) of the text), with
separation ratio,r f /rs (r f andrs are the distances from the origin of the field and source positions, respectively),
and Debye–H¨uckel screening parameter,κ, using (a) the “scaled Coulombic” approximation and (b) the four-order
(M = 4) SMBF-based multipole expansion.

Unless otherwise stated, all the results reported below were obtained using the following
fixed input parameters: the maximum number of particles per terminal node in the octree,
Nc= 12 (nodes that contain more thanNc particles are subdivided into “child” nodes); the
box separation parameter,Ls= 1; and the order of the multipole expansion,M = 2.
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FIG. 4. Comparison of the CPU time (in seconds) as a function of the number of charged particles involved in
the calculation of the electrostatic energy and forces of an interwound DNA chain and open linear polyelectrolyte
chain (a) and fcc lattice and random configuration of charges (b) at 0.1 M NaCl, using the direct and fast summation
methods.

4.2.1. Timing. Timings for the calculation of the Yukawa energy and forces using both
direct and fast adaptive multipole algorithm were obtained using a 100-MHz single processor
(R40000) SGI workstation. Because of the lengthy computation times, CPU estimates for
direct summation applied to systems involving more than 11,000 particles were estimated
by extrapolation.

Figure 4a compares the CPU time required to compute the electrostatic energy and
forces for open linear polyelectrolyte chains and supercoiled polyelectrolyte DNA chains
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at 0.1 M NaCl using the direct and fast summation methods. The computational merits in
adopting the fast over direct summation algorithm are clearly evident. Examination of the
curves confirms that the direct summation computation exhibits the expected quadratic time
complexity, whereas the CPU time of the fast summation method scales asO(N1.14) and
O(N1.02) for the open chains and supercoiled DNA chains, respectively. The nearly linear
scaling of the fast method is essentially independent of both the assumed chain configuration
and salt concentration. Figure 4b reports CPU times for the fcc and random configuration
of charges at 0.1 M NaCl. The asymptotic scalings obtained with the fast method are now
O(N1.06) for the fcc lattice configuration andO(N1.14) for the random charge distributions.
These estimates are very similar to those obtained for the polyelectrolyte chains and confirm
that the asymptotic CPU scalings of the fast method are essentially independent of salt
concentration and charged particle configuration.

In the application of fast summation methods, the leading constant in the asymptotic CPU
behavior also assumes practical importance and is found to be configuration-dependent.
Figure 5 shows the relative computation speedup obtained when using the fast algorithm
in lieu of the direct summation method. The results reflect the dependence upon the basic
dimensionality of the structure—the highest speedup factors are obtained for the essentially
chainlike arrangements (e.g., polyelectrolyte molecules) and the lowest values for the vol-
umetric charged particle distributions (e.g., fcc lattice and random charge distributions).
The crossover point where the fast method proves faster than the direct summation method
is ∼200 for the polyelectrolyte chains and∼2000 for the fcc lattice and random particle
distributions. Greengard and Rokhlin [24] observed similar behavior for the FMM applied
to Coulombic potentials, where the crossover points occurred using 100 and 1000 particles
for the 2D and 3D charged particle systems, respectively. These results are qualitatively
explained by noting that the number of near-field interactions is proportional to the num-
ber of surrounding boxes that are populated by particles. For aD-dimensional charged

FIG. 5. Plot of the speedup of the fast method relative to the direct method versus the number of charged
particles in different charged systems: interwound DNA, knotted DNA, open linear polyelectrolyte chain, fcc
lattice, and random configuration of charges at 0.1 M NaCl.
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particle arrangement (whereD= 1, 2, and 3 refers to essentially chainlike, surfacelike, and
fully 3D particle distributions, respectively), the number of such near-field boxes is roughly
(2Ls + 1)D. This agrees with the observed one order of magnitude disparities in speedup
for the one- and three-dimensional structures computed usingLs= 1. For essentially 2D
structures associated with solvated biomolecular surfaces in BEM formulations of the linear
Poisson–Boltzmann equation one anticipates speedups that are roughly one-third those for
the 1D structures considered here.

4.2.2. Accuracy. The advantages realized in terms of computation time when adopting
the fast algorithm must be weighed against the accompanying errors incurred in truncating
the infinite multipole expansion. It is important to point out that this truncation error has
two properties that must be considered in practical applications. The first is the magnitude
of the error, which is of direct and obvious importance to the user when interpreting results
and assessing overall accuracy. The second property, which is not dealt with here, concerns
the discontinuous behavior of the error with respect to configurational changes. Consider
a deterministic optimization process where a minimum energy configuration of, say, a
supercoiled DNA chain is sought under the simultaneous action of elastic and electrostatic
forces. During the optimization process, the locations of the charged particles change so
that they will be reassigned to different cells in the octree (the octree itself will usually
be regenerated periodically). The multipole approximation to the long-range influence of a
charged particle that has been reassigned to a new cell changes discontinuously, which can
pose difficulties for gradient-based optimization algorithms. Also, energy drifts observed
in a molecular dynamics simulation of a 36,000-atom protein–DNA–water system, which
employed a high-order FMM algorithm for the Coulombic forces, were attributed to similar
discontinuous behavior of the multipole expansion approximation [5]. IncreasingM or Ls

can reduce these discontinuities, but this is an inefficient way to proceed because numerical
smoothness rather than absolute error requirements then dictate the order of the multipole
expansion. To our knowledge, this problem has not been addressed, and the ability to perform
deterministic optimization and molecular dynamics using low-order multipole expansions
remains an important and useful objective.

In the present study, the dependence of the electrostatic energy and force errors upon salt
concentration and various computational parameters, includingLs andM , is assessed. Ac-
curacy is measured in terms of the relative electrostatic energy error,(Eapprox−Eexact)/Eexact,
and the relative root-mean-square (rms) electrostatic force error,‖fapprox− fexact‖/‖fexact‖,
where Eapprox is the approximate electrostatic energy using the fast method;Eexact is
the exact energy obtained by direct summation;fapprox and fexact are the (3N)-vector of
concatenated charged particle forces computed using the fast and direct summation tech-
niques, respectively; and‖ · ‖ is the Euclidean norm.

Table 2 presents the electrostatic energy and force errors of several charged systems over a
broad range of salt concentration. As is evident from Table 2, the electrostatic energy error is
at most 0.002 for all charge configurations considered and remains essentially independent
of salt concentration. The electrostatic force errors (Table 2) are also insensitive to salt
concentration up to 0.01 M NaCl, but are at least an order of magnitude larger than the
electrostatic energy errors. The dependence of the electrostatic energy and rms force error
upon system size at fixed salt concentration (0.1 M NaCl) is shown in Table 3. The variation
of energy error with system size is configuration dependent, but much less so for the rms
force error.
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TABLE 2

Electrostatic Energy Error and Root-Mean-Square (rms) Electrostatic Force Error for

Different Configurations of Charged Particles under Varying NaCl Concentrations

Configuration NaCl concentration (M) Energy error rms force error

Open linear 1.0× 10−6 3.7× 10−4 9.4× 10−3

polyelectrolyte 1.0× 10−4 2.0× 10−4 8.9× 10−3

chain 1.0× 10−2 1.9× 10−4 4.8× 10−3

1.0× 10−1 4.6× 10−5 1.3× 10−3

1.0 1.0× 10−6 5.9× 10−5

Interwound DNA 1.0× 10−6 6.7× 10−4 1.8× 10−1

1.0× 10−4 5.1× 10−4 1.9× 10−1

1.0× 10−2 3.4× 10−4 2.3× 10−1

1.0× 10−1 2.1× 10−4 1.2× 10−1

1.0 1.1× 10−5 1.3× 10−2

Random charge 1.0× 10−6 2.8× 10−4 1.2× 10−2

distribution inside 1.0× 10−4 3.0× 10−4 1.2× 10−2

a cube 1.0× 10−2 1.6× 10−4 1.5× 10−2

1.0× 10−1 1.0× 10−3 2.2× 10−2

1.0 7.4× 10−4 7.7× 10−3

Face-centered-cubic 1.0× 10−6 2.4× 10−4 1.2× 10−2

lattice 1.0× 10−4 2.7× 10−4 1.3× 10−2

1.0× 10−2 3.3× 10−4 1.3× 10−2

1.0× 10−1 3.1× 10−6 1.9× 10−2

1.0 2.0× 10−3 5.0× 10−2

TABLE 3

System Size Dependence of the Electrostatic Energy Error and Root-Mean-Square (rms)

Electrostatic Force Error for Different Configurations of Charged Particles at 0.1 M NaCl

Configuration Number of charged particles Energy error rms force error

Open linear 500 1.9× 10−5 6.8× 10−4

polyelectrolyte 1,000 7.7× 10−5 7.3× 10−4

chain 2,000 2.2× 10−5 1.1× 10−3

5,000 4.7× 10−5 1.4× 10−3

10,000 4.6× 10−5 1.3× 10−3

Interwound DNA 500 5.4× 10−4 3.0× 10−2

1,000 2.7× 10−4 3.7× 10−2

2,000 2.8× 10−4 8.0× 10−2

5,000 2.2× 10−4 1.0× 10−1

10,000 2.1× 10−4 1.2× 10−1

Random charge 500 7.5× 10−5 1.6× 10−2

distribution inside 1,000 3.6× 10−4 1.7× 10−2

a cube 2,000 6.4× 10−4 2.0× 10−2

5,000 1.0× 10−3 1.9× 10−2

10,000 1.0× 10−3 2.2× 10−2

Face-centered-cubic 500 3.1× 10−4 9.7× 10−3

lattice 1,000 3.6× 10−4 1.1× 10−2

2,000 1.3× 10−4 1.3× 10−2

5,000 2.1× 10−4 1.6× 10−2

10,000 3.1× 10−6 1.9× 10−2
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There are two possible reasons for the relatively high electrostatic rms force errors. First,
the net electrostatic forces are inherently more sensitive to errors because their evaluation
involves cancellation of equal and opposite contributions. Consider, for example, a circular
arrangement of equal charges and evaluate the net force at a particle,i , located at azimuthal
angleθ = 0. From symmetry the force component in the circumferential direction,fθ is
zero and only a radial component,fr , remains. Nowfθ can be decomposed into two com-
ponents,fθL and fθR, representing the respective contributions of particles located between
azimuths,θ ∈ [−π, 0] and θ ∈ [0,+π ]. For large particle counts, one can show that the
magnitudes of the two components,fθL and fθR, are much larger than the net residual
forces, fr and fθ , so that multipole errors that are small compared tofθL are nevertheless
large compared tofθ and fr . The second reason for higher force errors is that settingLs= 1
leads to slowly converging multipole series. This is discussed further below.

The order of the multipole expansion,M , and the separation criterion,Ls, are the primary
parameters available for controlling error. In its current form, the software accommodates
arbitrary-order multipole expansions. However, the Taylor series extrapolations used to
project accumulated energy and force contributions from coarser to finer level cells are
limited to second order. For fast calculations of systems governed by Coulombic potentials,
the error is controlled by the minimum expansion order adopted in the multipole and Taylor
series approximation, and it is therefore usual to use the same order in both approximations.
This also applies to the Debye–H¨uckel interactions, as can be inferred from the results in
Figs. 6a and 6b depicting the energy and force errors for the random distribution of 8000
charged particles. Results were obtained using: (i) both multipole and Taylor series approx-
imations of order,M = 2; (ii) a multipole expansion of order,M = 4, and a second-order
Taylor series extrapolation; (iii)M = 2 multipole expansions alone; and (iv)M = 4 mul-
tipole expansions alone. When both multipole and Taylor series expansions are employed
(cases (i) and (ii)), convergence stalls forM > 2. This is dramatically clear in Fig. 6b, where
increasingM from 2 to 4 has practically no effect since the overall rms force error is now
controlled entirely by the order of the Taylor series extrapolation, which is 2 in both cases.
When only the multipole expansion is employed (cases (iii) and (iv)), the errors reduce
with M in the predictable way with at least a fivefold reduction in the rms force error when
doubling the multipole expansion order. Similar behavior in the energy and rms force errors
is obtained for the other charge configurations, which suggests the need for higher order
Taylor series expansions accompanying same order multipole expansion approximations.
On the other hand, the use of higher order multipole expansions increases the cost involved
in their evaluation, and it remains unclear at what point (or, rather, for which problem
size) the combination of higher order multipole and Taylor series expansions with nearly
O(N) asymptotic behavior outperforms theO(N log N) scalings procured using multipole
expansions alone.

The rms force errors recorded in Fig. 6b can be rapidly reduced by increasing the box
separation parameter,Ls. Indeed, careful examination of the error bounds associated with
the multipole expansion for the Coulombic potential [49] reveals that although settingLs= 1
ensures convergence to the exact value, the convergence rate can be slow, particularly when
theL∞ norm is used to define the distance,Ds f , between a pair of source and field boxes. This
is because the error bounds are properly formulated in terms of minimum enclosing spheres
rather than cubes, which implies that the maximum errors in the multipole expansion for a
cell with sided evaluated at distanceR from the center behave as(

√
3d/2R)M+1 rather than
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FIG. 6. Dependence of the (a) electrostatic energy error and (b) electrostatic rms force error of the random
distribution of 8000 charges, over a broad range of salt concentration, on the order of the multipole expansion,M ,
when only theM-order multipole expansion is invoked or bothM-order multipole and second-order Taylor series
expansions are employed.

(d/2R)M+1. ForLs= 1, d/R< 2/3 and so the truncation error∼0.577M+1. ForLs= 2, the
error obeys a more favorable 0.346M+1 behavior.

Figure 7 shows the dependence of the electrostatic energy and force error for the random
distribution of 8000 charged particles uponLs. As expected, both errors decrease withLs and
order of magnitude reductions are observed at all salt concentrations when incrementingLs

from 1 to 2. Similar behavior is observed for the other charge configurations. The improved
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FIG. 7. Dependence of the electrostatic energy and rms force errors for the random distribution of 8000
charges on the separation criterion,Ls, over a broad range of salt concentration.

accuracy is accompanied by longer calculation times—increasingLs from 1 to 2 typically
incurs a factor of 2 to 3 increase in computation time. These results show that considerable
benefit in terms of reduced computation time and enhanced accuracy can be derived by
directing careful attention to the tests (and distance norms) used to distinguish between
near- and far-field interactions. Close scrutiny of these tests is imperative when considering
interacting elements of finite size (e.g., boundary elements) since the multipole expansion
may not converge at all unless the element size is accounted for. The authors are currently
developing tests based upon minimum enclosing spheres.

5. CONCLUSIONS AND FUTURE WORK

A new multipole expansion using spherical modified Bessel functions has been devel-
oped for the rapid calculation of electrostatic interactions with implicit ion screening. A key
advantage of the SMBF-based multipole expansion for the Debye–H¨uckel kernel is that the
number of multipole terms necessary to attain a given accuracy is essentially independent
of κ. Detailed studies involving a single source particle show that the maximum relative
electrostatic energy error incurred by anM-order multipole expansion of the Yukawa poten-
tial is bounded above by the error of the equivalent multipole expansion for the Coulombic
potential. Also, the relative energy error decreases monotonically with both the distance of
the evaluation point,r f > rs, and the Debye screening parameter,κ.

A fast adaptive multipole algorithm was developed by combining the new SMBF-
based multipole expansion with an octree-based hierarchical grouping procedure. This
algorithm is shown to achieve nearlyO(N) scaling in the computation of the screened
Coulomb energy and forces irrespective of charged particle configuration and fixed salt
concentration. The leading constant in the asymptotic CPU behavior is influenced by
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several parameters, including the configuration of charged particles. In particular, an or-
der of magnitude difference in CPU times is observed when considering essentially 1D,
chainlike structures (e.g., polyelectrolyte chains) compared to fully 3D arrangements such
as fcc lattice and random charge configurations. The accuracy in the screened Coulom-
bic energy and force computation can be effectively controlled by adjusting the num-
ber of terms retained in the multipole expansion,M , and the box separation parameter
Ls.

Recommendations for future research efforts should emphasize both the theoretical as-
pects of the SMBF-based multipole expansion and the practical implementation issues. For
example, fast summation algorithms developed for pure Coulombic potentials make exten-
sive use of translation theorems to shift multipole expansions between different locations.
Though comparable results can be developed for the multipole expansions of screened
Coulomb potentials (such results are derived from expressions for the exp(−ikr )/r kernel,
see Refs. [17, 45, 47]), the theory is not as well developed and the shifting operations are
considerably more expensive. It would also be of both theoretical and practical interest to
conduct a more rigorous error bound analysis of the new SMBF-based multipole expansion.
Tighter error bounds can be employed to produce more efficient fast multipole algorithms
[42]. The new fast adaptive multipole algorithm is amenable to parallel operation and work
is presently being pursued by the authors to develop a parallel version of the method using
the MPI communication protocol.

Coupling the present fast adaptive multipole algorithm to existing MC and MD codes will
allow simulation of large-scale systems, such as weakly charged polyelectrolyte chains and
polyelectrolyte supercoiled DNA, whose electrostatic interactions can be well described by
the Debye–H¨uckel potential. Finally, the authors are currently involved in incorporating the
fast algorithm into a boundary element code to solve the linear Poisson–Boltzmann equation
for large solvated biomolecules. In boundary element methods, storage considerations rather
than CPU concerns usually impose limits upon problem size, and a major reason for using
a fast summation algorithm is to alleviate storage as well as CPU costs. Results from this
endeavor will be presented elsewhere.

APPENDIX A

Spherical Harmonics Expressed in Cartesian Coordinates

It is well known that the productsr nYnm can be expressed as multi-dimensional polyno-
mials in Cartesian coordinates [1, 41]. To develop such expressions as well as relations for
the spatial derivatives of such functions and identities between spherical harmonics of dif-
ferent orders and degree the following result proves useful. Begin by defining the complex
quantity,

W = z+ i {x cosu+ y sinu} = z+ i {qeiu + pe−iu}, (A.1)

where

p = x + iy

2
, q = x − iy

2
⇒ x = p+ q, y = i (q − p); (A.2)
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then the integral

9nm = i m

2πn!

2π∫
0

Wneimu du (A.3)

is related to the products

r nYnm = Cnm9nm, Cnm =
√
(2n+ 1)(n−m)!(n+m)!

4π
, (A.4a, b)

whereYnm is the normalized spherical harmonic function.
Noting

2π∫
0

eiku du=
{

2π, k = 0

0, k 6= 0
, (A.5)

Eq. (A.3) reduces to the simple form

9nm =
[(n−m)/2]∑

k=0

zn−m−2k

(n−m− 2k)!

qk

k!

(−p)m+k

(m+ k)!
, (A.6)

where [∗] denotes the rounded down integral component of the argument. For example,

900 = 1 (A.7a)

910 = z, 911 = − (x + iy)

2
(A.7b, c)

920 = 1

2
z2− 1

4
(x2+ y2), 921 = 1

2
z(−x − iy), 922 = (x + iy)2

8
. (A.7d, e, f )

Expansions of arbitrary order,N, can be developed using Eq. (A.6). But this impliesO(N3)

operations sinceO(N/2) multiplies are required for each of theO(N2) multipoles. To
reduce the operation count toO(N2) one employs recursion relationships developed by
considering the integral relation, Eq. (A.3), and integrating by parts:

9nm = i m

2πn!

2π∫
0

Wneimu du

= i m

2π imn!

[Wneimu]2π
0 −

2π∫
0

nWn−1(−qeiu + pe−iu)eimu du


= − 1

m
(q9n−1,m+1+ p9n−1,m−1). (A.8)

Another relation can be developed by noting

9nm = i m

2πn!

2π∫
0

(z+ i {qeiu + pe−iu})Wn−1eimu du

= 1

n
(z9n−1,m + q9n−1,m+1− p9n−1,m−1). (A.9)
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Combining the last two relations yields

(n+m)9nm = z9n−1,m − 2p9n−1,m−1, (A.10)

which is applicable for all 0≤m≤ n− 1. Form= n, simply use9nn= (−p)n/n!; to start
the recursion, use900= 1 and910= z; and finally, form= 0, use9n,−1=−9∗n,1.

In the fast summation algorithm, multipole coefficients are first computed explicitly upon
the finest level boxes. Coarser level coefficients are then obtained from finer level ones by
recursive shifting of the coefficients from one box center to another. Such shifting rules are
readily developed for the Coulombic case using Eq. (A.3). To evaluate the multipoles about
the shifted point(p′,q′, z′)← (p+ a,q + b, z+ c), consider

[9nm]{p′,q′,z′} = i m

2πn!

2π∫
0

{W + c+ i (beiu + ae−iu)}n eimu du. (A.11)

The term in brackets can be expanded into powers ofa, b, andc using the binomial theorem
which results inO(N3) terms, but which can be rearranged to a form involving onlyO(N2)

terms so that for anN-order expansion (O(N2) multipoles) a total ofO(N4) operations
would be required. A better way is to apply the shifts alongp,q and thenz separately,
resulting in

[9nm]{p′,q,z} =
[(m+n)/2]∑

k=0

(−a)k

k!
[9n−k,m−k]{p,q,z} (A.12a)

[9nm]{p′,q′,z} =
[(n−m)/2]∑

k=0

bk

k!
[9n−k,m+k]{p′,q,z} (A.12b)

[9nm]{p′,q′,z′} =
n−m∑
k=0

ck

k!
[9n−k,m]{p′,q′,z}, (A.12c)

which now require onlyO(n) operations per multipole per shift for a total ofO(N3)

operations. These expressions are much simpler than traditional shifting expressions for
spherical harmonics. However, they are not optimal. A complete shift of all multipoles can
in fact be accomplished in onlyO(N2) operations using the discrete fast Fourier transform
[16], although the operations are algebraically more involved and require modification to
maintain efficiency for low-order multipole expansions.

The preceding expressions now allow construction of multipoles for pure Coulombic as
well as (see below) screened Coulombic potentials. Next, consider the evaluation of the
multipole expansion at an observation point. This requires evaluation of the functionsψnm

defined in Eq. (A.13), which are linearly related to the productYnm/r n+1 and hence to the
combination9nm/r 2n+1. Hence, the recursive evaluation procedures available for9nm are
readily applied to evaluation of9nm also. Expressions for the spatial gradients required in
Taylor series expansions are obtained from the integral relation.

ψnm = n!

2π i m

2π∫
0

W−(n+1)eimu du (A.13)
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Ynm

r n+1
= cnmψnm, cnm = cn,−m =

√
2n+ 1

4π(n−m)!(n+m)!
= 2n+ 1

4πCnm
. (A.14a, b)

Comparing Eqs. (A.4) and Eqs. (A.14) reveals

ψnm = 1

r 2n+1

Cnm

cnm
9nm = (n−m)!(n+m)!

r 2n+1
9nm. (A.15)

From Eq. (A.13), the gradients

∂/∂p

∂/∂q

∂/∂z

ψnm = −n!(n+ 1)

2π i m

2π∫
0

W−(n+2)

ie−iu

ie+iu

1

 eimu du= −

 ψn+1,m−1

−ψn+1,m+1

ψn+1,m

, (A.16)

or using the definitions forp andq, Eq. (A.2):

∇ψnm = [ A]


ψn+1,m−1

ψn+1,m

ψn+1,m+1

 , [ A] = −1

2

1 0 −1

i 0 i

0 2 0

 . (A.17a, b)

Hence, the gradient is simply a linear combination ofψn+1,m+ j . Moreover, because the
coefficients in [A] are independent ofR

¯
, higher order derivatives are easily obtained as

linear combinations of lower order ones.
In Appendix B, another expression for the gradient is required which is derived as follows.

Following the same procedure used to derive Eq. (A.17) one obtains

∇9nm = [B]


9n−1,m−1

9n−1,m

9n−1,m+1

 , [B] = −1

2

1 0 −1

i 0 i

0 −2 0

 , (A.18a, b)

which upon using identity, Eq. (A.15) yields

∇(ψnm) = 1

r 2
[B][ Nnm]


ψn−1,m−1

ψn−1,m

ψn−1,m+1

− (2n+ 1)
ψnm

r 2
R
¯

(A.19a)

[Nnm] = diag{(n+m)(n+m− 1), (n+m)(n−m), (n−m)(n−m− 1)}. (A.19b)

Recurrence relationships forψnm can be derived in a similar manner as for9nm. Similarly,
shifting rules forψnm are developed by expanding the integral representation about a shifted
center. Now, however, one obtains an infinite series. As before, multipoles about the shifted
point(p′,q′, z′)← (p+a,q+b, z+c) are obtained by performing three successive shifts
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along each Cartesian direction. Thus, for example,

[ψnm]{p′,q,z} = n!

2π i m

2π∫
0

(W + iae−iu)−(n+1)eimu du

= n!

2π i m

2π∫
0

W−(n+1)
∞∑

k=0

(−1)k
(

n+ k

k

)(
iae−iu

W

)k

eimu du

=
∞∑

k=0

(−a)k

k!
[ψn+k,m−k]{p,q,z}. (A.20a)

Similarly,

[ψnm]{p′,q′,z} =
∞∑

k=0

bk

k!
[ψn+k,m+k]{p′,q,z} (A.20b)

[ψnm]{p′,q′,z′} =
∞∑

k=0

(−c)k

k!
[ψn+k,m]{p′,q′,z}. (A.20c)

The downward pass of the fast summation process may be formulated either in terms of
a succession of Taylor series extrapolations from coarser to finer level box centers or else
as shifts in the expansion products. The former employs repeated application of the relation
given in Eq. (A.17), which, assuming that all derivatives to orderN are retained in the Taylor
series expansion, requiresO(N6) operations (this follows since there areN4 terms in the
Taylor series expansion of each of the(N + 1)(N + 2)/2 multipole coefficients); the latter
applies a truncated version of relations given in Eq. (A.20), which entailsO(N3) operations
assuming the series are truncated at theNth term. Clearly, the shifted expansion exhibits
more favorable computational complexity for large-order expansion; unfortunately, it is not
easily applied to the screened Coulombic potentials of interest here and at present regular
Taylor series expansions are invoked.

APPENDIX B

Application to Screened Coulombic Kernels

Implementation of the SMBF-based multipole expansion requires manipulation of the
productsQmk defined in Eqs. (9). It is somewhat easier to proceed by first deriving the
required relationships using the spherical (unmodified) Bessel functions. The corresponding
expressions for the SMBFs can then be obtained by appropriate substitutions of imaginary
arguments. Consider the productYnmζn(r ), whereζn(r ) is any of thereal spherical Bessel
functions. To expedite computation, it is useful to establish recurrence relations for the
gradients of these products (note that the products themselves are most efficiently procured
by using the recurrence relations forYnm andζn separately).

To derive such a relation, first define

pλnm = ψnmr n+1ζn(λr ) ⇒ Ynmζn(λr ) = cnmpλnm. (B.1a, b)
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Also, the following identities for spherical Bessel functions are required:

d

dx

(
xn+1ζn(x)

) = xn+1ζn−1(x),
2n+ 1

x
ζn = ζn−1+ ζn+1. (B.2a, b)

From these relations,

∇(pλnm

) = r n+1ζn∇ψnm+ λψnmr n+1ζn−1
R
¯
r

= λ r n+2

2n+ 1
(ζn+1+ ζn−1)∇ψnm+ λψnmr n+1ζn−1

R
¯
r
, (B.3)

Next, using identies given in Eqs. (A.17) to (A.19),

(ζn+1+ ζn−1)∇ψnm = ζn+1[ A]


ψn+1,m−1

ψn+1,m

ψn+1,m+1

+ ζn−1
1

r 2
[B][ Nnm]


ψn−1,m−1

ψn−1,m

ψn−1,m+1


− (2n+ 1)ζn−1

ψnm

r 2
R
¯
, (B.4)

which when substituting back into Eq. (B.3) produces

∇(pλnm

) = λ

2n+ 1

[ A]


ψn+1,m−1

ψn+1,m

ψn+1,m+1

 r n+2ζn+1+ [B][ Nnm]


ψn−1,m−1

ψn−1,m

ψn−1,m+1

 r nζn−1

 ,
(B.5a)

or

∇(pλnm

) = λ

2n+ 1
[ A]




pλn+1,m−1

pλn+1,m

pλn+1,m+1

+ [Nnm]


pλn−1,m−1

−pλn−1,m

pλn−1,m+1


 (B.5b)

(note the negative sign forpλn−1,m). Forn=m= 0, use

∇ pλ00 = ∇ζ0 = −λR
¯

r
ζ1 = −λζ1

r 2

2

1 0 −1

i 0 i

0 2 0



ψ1,−1

ψ1,0

ψ1,1

 = λ[ A]


pλ1,−1

pλ1,0
pλ1,1

 , (B.6)

which is the same as Eq. (B.5b) but dropping the last term. Fortunately, the coefficients
and matrices are all independent of coordinates, thus greatly facilitating construction of
higher order gradients. Equation (B.5b) agrees with Eq. (7.2.32) in Ref. [41] except for the
derivative with respect toz, which reads

∂

∂z
(Ȳnmζn) = λ

2n+ 1
{(n+m)Ȳn−1,mζn−1− (n−m+ 1)Ȳn+1,mζn+1}, (B.7)
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To develop analogous expressions for themodifiedspherical Bessel functions, use

K̂ n+1/2(z) ≡
√
π

2z
Kn+1/2(z) = −π

2
i nh(1)n (i z). (B.8)

Hence, settingλ= i κ, substituting

ζn(λr ) = h(1)n (i κr ) = − 2

π i n
K̂ n+1/2(κr ), (B.9)

defining

qκnm ≡ ψnmr n+1K̂ n+1/2(κr ) = −π
2

i n pi κ
nm, (B.10)

and inserting into Eq. (B.5), one obtains

∇(qκnm

) = κ

2n+ 1
[ A]




qκn+1,m−1

qκn+1,m

qκn+1,m+1

− [Nnm]


qκn−1,m−1

−qκn−1,m

qκn−1,m+1


 , (B.11)

which is identical to Eq. (B.5) except for the reversed sign before [Nnm]. Again, the last
term is discarded for the case,n=m= 0.

Finally, bothpλnm andqκnm exhibit singular behavior whenλ orκ → 0, and it is preferable
to operate with the products (λn+1 pλnm) and (κn+1qκnm) respectively, which remain well
behaved for allλ or κ providedr > 0. The latter product is related to the termQnm(κ, R

¯
)

defined in Eq. (9):

κn+1qκnm =
π · 1 · 3 · · · (2n− 1)

(
Qκ

nm

)∗
2

. (B.12)

Substituting into Eq. (B.11) shows

∇Qκ
nm = [ A∗]




Qκ
n+1,m−1

Qκ
n+1,m

Qκ
n+1,m+1

− κ2

(2n− 1)(2n+ 1)
[Nnm]


Qκ

n−1,m−1

−Qκ
n−1,m

Qκ
n−1,m+1


 , (B.13)

where [A∗] is the matrix, [A], with all elements replaced by their complex conjugates.
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