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The screened Coulomb (Yukawa or Debyeekél) potential ® = exp(—«r)/r,
wherer is the separation distance ands the Debye—ldckel screening parameter,
gives a good description of the electrostatic interactions in a variety of biologically
and physically important charged systems. It is well known that the direct calcu-
lation of the energy and forces due to a collectiorNo€harged particles involves
the pairwise summation of all charged particle interactions and exhibi@(&lt)
computational complexity which severely restricts maximum problem size. This
has prompted the development of fast summation algorithms that allow the elec-
trostatic energy and forces to be obtained in d@IgN log N) operations. To date,
however, practically all such implementations have been limited exclusively to pure
Coulombic potentialsi(=0), and the central contribution of the present method
is to extend this capability to the entire range of the inverse Debye leagtif.

The basic formulation and computational implementation of the spherical modified
Bessel function-based multipole expansions appropriate for the screened Coulomb
kernel are first presented. Next, a simple model system consisting of a single source
charged particle is studied to show that the maximum electrostatic energy error in-
curred by anM-order multipole expansion for the Yukawa potential is bounded
above by the error of the equivalent multipole expansion for the Coulombic po-
tential. Finally, timing and accuracy studies are presented for a variety of charged
systems including polyelectrolyte chains, random distributions of charges inside a
cube, and face-centered-cubic lattice charge configurations containing up to 103,823
charges. (© 1999 Academic Press
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1. INTRODUCTION

Electrostatic interactions play a major role in many molecular systems, and consider:
effortis being devoted to the accurate and efficient computer modeling of large-scale ph
cally realistic charged systems. Because of their long-range nature, all interactions betv
charged particles must be accounted for so that the exact calculation of the electros
energy and forces by direct summation requidgdN?) operations. To alleviate this high
computational burden, much research has been directed toward the development of so-
fast summation methods which combine hierarchical grouping procedures and multiy
expansion approximations to realigg(N log N) operation counts [23, 26, 27]. To date,
such methods have been limited to systems governed by pure Coulombic potentials. N
molecular systems of biological and physical significance, however, are governed by
screened Coulomb (also called the Debyaek€l or Yukawa) potential. Fast summation
methods are not currently available for charged systems governed by the Yukawa pc
tial, and the focus of the present paper is to formulate and implement a new fast aday
multipole algorithm suitable for such systems.

The total screened Coulomb electrostatic energy of a system cont&inthgrged par-
ticles, is given by

i—1
qi qJ efoij ,
Fij

Ue = 1)

S
[1]=

i=1 j=1
wherex is the Debye—ldckel screening parameter (which is proportional to the square ro
of the ionic strength of the solutiory), is the charge of particle ¢ is the dielectric constant
of the solvent, and;; is the separation distance between particlesd j. Equation (1)
characterizes problems where electrostatic interactions are attenuated by a background
medium. Whernx =0, this expression reverts to the form for pure Coulombic interaction
It should be noted that Eq. (1) describes the solvent solely by its dielectric constant (
dielectric continuum approximation) and the screening effect of the ionic species in solut
by the exponential terne(*"). Hereafter the direct summation of &N — 1)/2 pairwise
electrostatic interactions in Eq. (1) will be termed the “direct summation method.”

The screened Coulombic potential, éxar)/r, has been extensively used to model
intermolecular/intramolecular electrostatic interactions in a wide range of physical &
macromolecular systems such as charge-stabilized colloids [48, 57], weakly charged
electrolytes[11, 29, 62], lattice polyelectrolytes [2], dendritic polyelectrolytes [65], biopol
electrolyte DNA [21, 51], ionic micellar solutions [67], and colloidal (dusty) plasmas [2¢
59]. The study of Yukawa systems usually involves Monte Carlo (MC) or molecular d
namics (MD) simulations [2, 19, 33, 63] where the screened Coulombic energy anc
forces are repeatedly evaluated subject to free or periodic boundary conditions. The r
computationally demanding aspect of these MC/MD simulations is the direct evaluatior
the long-range electrostatic potential energy and/or forces which exbi£) computa-
tional complexity. Of course, the same is true for MC/MD simulations of charged syste
governed by the Coulombic potential.

The boundary element-based solution to the linear Poisson—Boltzmann equation (P
is also subject to th® (N?) behavior due to the mutual screened Coulombic interactior
between allN boundary elements [32, 34, 68]. Despite being more accurate than fini
difference-based methods, the boundary element formulation of the linear PBE is not wic
used in biomolecular applications due to both CPU and memory demands.
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Due to the high costs associated with the direct computation of the electrostatic ene
and forces and the importance of large-scale computer simulations of molecular syste
considerable effort has been devoted to developing particle—mesh approaches and tree-
fast multipole methods (FMMs) for solving-body electrostatic problems, and there now
exist numerous, highly efficier® (N log N) and O(N) implementations for calculating
Coulombicinteractions in both nonperiodic (i.e., isolated systems) and periodic charg
systems [6, 8, 12, 15, 18, 22, 23, 27, 37, 38, 53, 66]. For a comparison of the FMM ¢
particle—mesh-based approaches the reader is referred elsewhere [43, 60].

In a particle—-mesh-based approach, the collection of charges is essentially replace
a smoothed charge distribution which may be accurately represented upon a regular n
The electrostatic potential due to this smoothed distribution is developed by transform
the problem into frequency space using fast Fourier transforms (FFTs) upon the reg
mesh. ForM grid points the FFT is accomplished ®(M log M) operations, which, if
M log M « NZ2, allows CPU reductions to be realized. The potentials induced by a charg
particle and its smoothed analogue at a distant point are virtually indistinguishable.
closer (near-field) evaluations, however, the potentials differ markedly and local corr
tions must be applied to restore global accuracy. Particle—-mesh algorithms are attrac
because of the straightforward coding requirements and their smooth numerical beha
which is conducive to deterministic optimization studies. For problems involving volt
metric charge distributions that fill the computational domain, particle—mesh algorith
are computationally most effective. Thus, the particle—mesh-based approach for the Ex
sum [12, 14, 18] in molecular dynamics of charged systems that invoke periodic bound
conditions is now widely used in large-scale biomolecular simulations [9, 31, 56, 69].

On the other hand, when studying systems where the charges or active element:
distributed upon surfaces (this is commonly the case in boundary element treatment:
along chains (e.g., polyelectrolyte modeling), performance is likely to degrade. This
because the smoothed problem is still solved upon a full 3D regular mesh, which imp
high storage penalties and costs in evaluating the FFTs (i.e., the requiféinemM « N?
becomes more difficult to satisfy). In such problems, FMM techniques are likely to pro
more efficient because of the adaptive mesh and hierarchical groupings made possible |
octrees.

The fast multipole algorithm developed by Greengard and Rokhlin, which combines
hierarchical grouping of particles with truncated multipole expansion and local Taylor ser
expansion for the Coulombic potential, was originally developed for 2D charged syste
[26, 27]. Spherical harmonics-based fast multipole algorithms were subsequently exter
to accommodate both nonperiodic and periodic 3D Coulombic systems [8, 24, 27, 43,
Many different variants of the FMM, including Cartesian-based versions [15, 55], paral
implementations [6, 35], and other efficient implementations, are now available [10, 16,
30, 47, 66]. Some groups have used the fast multipole algorithm in large-scale molec
dynamics simulations (e.g., see [4, 39]).

Recently,fastboundary element methods (BEMs) have been developed for solving t
Poisson equation (zero ionic strength) for large solvated molecules of arbitrary sha
[3, 44, 70]. In these approaches the fast multipole algorithm for the Coulombic potentia
employed to reduce both calculation time and memory demands. Comparable reduct
in computational costs can be anticipated ifaat BEM implementation for the linear
Poisson—Boltzmann equation (PBE). To date, such an implementation has not been real
however, due to the lack of a fast multipole approximation for the screened Coulom
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potential. A fast boundary element solution of the linear PBE will make it more appealir
especially when coupled to molecular dynamics algorithms for large-scale biomolect
systems.

While FMM and particle—mesh methods are well developed for electrostatic syste
governed by the Coulombic potential, no corresponding fast methods are yet available
the Yukawa potential. Hence, computer simulation studies involving this potential have b
limited to small systems and employ potential cutoffs to maintain reasonable computatic
costs [7, 19, 46, 58, 61, 62]. Also, in simulations of supercoiled polyelectrolyte DNA tf
individual phosphate groups are replaced by charged segments (containing 60 or r
phosphate groups), which interact througproximateelectrostatic pair potentials (e.qg.,
hard-sphere with ionic strength dependent diameter or screened Coulomb) [13, 40, 51
in order to reduce computational costs.

The development of a fast adaptive multipole algorithm for the screened Coulombic |
tential is therefore crucial to the accurate and computationally efficient modeling of a vari
of large-scale Yukawa systems and in the BEM solution of the linear Poisson—Boltzm:
equation. In a short communication [36], a parallel FMM algorithm for the Yukawa pote
tial claims to have been developed, but no details of the formulation and implementation
given. An approximate fast adaptive multipole algorithm for the calculation of the Yukav
energy was developed [20] where fti¢r) term was expanded in the conventional manne
using a formal Gegenbauer polynomial expansion. To account for ion screening, near-1
interactions were treated exactly using Eq. (1) and far-field interactions were simply sce
by e ", wherer is the distance between the expansion point of the inducing group and
evaluation location (either the center of another group or an individual particle). Order
magnitude reductions in CPU times were realized for laNye=(10*) charged systems, and
comparison against exact results showed good accuracy (1% energy errors or less). Qu
tively, for smallx, the approximation approaches the Coulombic limit with its well-knowr
accuracy bounds; for large the exponential scaling term dominates beyond a certain ran
and the higher order multipole terms become less relevant. Though capturing the domi
behavior, this previous approach remains essentially a first-order method where the hi
order (dipole, quadrupole, etc.) terms only improve convergence when the produist,
small. For largecr, error control is only possible by extending the near-field region.

It is possible to derive a convergent multipole approximation by expan@intg)/r
as a formal multi-dimensional Taylor series. Unfortunatelyxasncreases so does the
number of terms required for convergence of the multipole approximation. This behay
is due to the poor convergence of the Taylor series representation GfXxfor large
x. To accommodate the screened Coulombic potential, a completely different multip
expansion is warranted. The appropriate multipole expansion is here expressed in t
of spherical modified Bessel functions (SMBFs), the properties of which have been v
studied, and for which useful recursion and integral relationships are available. Moreo
the products formed by combining these functions with the spherical harmonics use
describe angular variations can be expressed in terms of minimal polynomials, ther
avoiding the need to convert between Cartesian and spherical coordinates. These pro
are also amenable to simple recursion relations which facilitate generation of higher ol
multipoles and formation of spatial gradients.

The layout of the paper is as follows. In the next section (Section 2), the formul
tion and manipulation of the new SMBF-based method for the Yukawa potential a
its gradients are described. Section 3 describes the computer implementation of the
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adaptive SMBF-based multipole algorithm for the screened Coulombic potential. In S
tion 4, results are presented illustrating the accuracy of the new SMBF-based multig
expansion for a simple model problem that consists of a single pair of unit positive chare
Timing and accuracy results are also shown for large-scale molecular test systems
a broad range of the DebyedEKel screening parameter. The molecular systems studi
include isolated open linear polyelectrolyte chains, chains of supercoiled and knotted p
electrolyte DNA, a random distribution of charges inside a cube and a face-centered-ci
(fcc) lattice configuration of charges in aqueous NaCl solutions. Finally, concluding rema
and suggestions for further work are presented in Section 5. Some of the more techt
material referred to in the text appears in the appendixes.

2. FAST EVALUATION OF YUKAWA ENERGY AND FORCES

As noted above, the evaluation of the Debyeek€l potential energy and forces us-
ing direct summation entails &B(N?) operation count due to the long-range interaction:
between allN charged particles. To reduce this bottleneck, one appeals to fast multip
methods which combine two basic components to reduce the operation cQuM fog N)
or O(N). The first is a hierarchical grouping procedure that assembles the active elem
(e.g., charges) into nested groups of specified size. Because of their ability to readily
commodate arbitrary nonuniform charged particle distributions, the adaptive data struct
known as octrees [50] are used for this purpose. The second component, which is the
mary subject of the present paper, is a multipole approximation to the electrostatic potel
and forces induced by a collection of charged particles at sufficiently well-separated,
field points. The remaining near-field interactions are computed in the conventional mar
using direct summation.

To derive a multipole expansion for the screened Coulombic potential valid forall,
consider (see Fig. 1) a charged source particle located at positiamd an observation
point, R (vector quantities are denoted by an underbar). The relative position vector betw
the source and observation pointiss R — p and the distance,= |r|. By expressing the
position vectors in spherical coordinates, ig(p, 8, ¢) and R(R, «, 8), a well-known
multipole expansion for the DebyedKel potential valid folR > p is given by [1]

D(r, k) = _r =8¢ > Tmi12(p)Km12R) D> Yik(0, §) Y, B). (2)
m=0

k=—m

The Y« are the same spherical harmonics employed in the multipole expansion for
Coulombic potential. The asterisk denotes the complex conjugate, and the sphe

R X Evaluation (or ' field' or 'observation') point
Origin

o)

~t

Source point @

FIG. 1. Schematic showing the location of source and field points relative to the origin of the coordine
system.
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modified Bessel functions of the first and third kind are defined as

~ T ~ T
Imi/2(X) = 4/ o Imt1/2(X), Kmi1/2(X) = 4/ gKerl/Z(X)v (3a, b)

where Iny1/2(X) and Kmpa/2(x) are the corresponding conventional (i.e., not spherica
modified Bessel functions of the first and third kinds, respectively. Useful properties
these functions include [1]:

(i) closed form expression in terms of polynomials and an exponential;
(ii) desirable asymptotic behavior for small argument,

Xm
1.3.5---(2m+ 1)’

, 71.3.5...2m—1)
Km1/2(X) ~ 5 L . (4a,b)

I m+1/2(x) ~

(iii) efficient evaluation using recurrence relationships among functions of differe
order.

Because of this last property, only a single exponentiation is required to corfr}pm,e or
Km+1/2 for all ordersm > 0, and hence to evaluate the entire multipole expansién at
It is computationally expedient to rescale and combine terms by first defining

1.3---@2m+1) . 2 xm+1 R
Om(X) = — m I mi1/2(X), Gm(x) = ;meH/Z(X)
(5a, b)
_ P"Ymk(©, ¢) . 4 CrkYmk(a, B)
‘Ilmk(Q) - ka ’ ¢mk(R) - 2m + 1 Rm+1 (Ga‘l b)
2m+ 1)(m — k)!(m + k)!
Coe = ( )( y )( ) (6¢)
T
and then substituting Egs. (5) and Egs. (6) into Eg. (2) to obtain
e KT ot m
— =D In(kP)Gm(kR) > U@ Vnk(R) (7)
m=0 k=—m

This rearrangement is useful in several respects. First, the expansion remains well bek
whenk — 0. Then, the small argument behavior of the SMBFs (Egs. (4a, b) and (5a,
reveals

A SR
imS—=>=5"3" Un@viR), ®)

0
A r r m=0k=—m

so that the multipole expansion for the Coulombic potential is recovered. This analyti
result is also easily reproduced numerically using the rapidly convergent and stable (v
respect to round-off) small argument representatiorg,adndG,,. The rescalings for the
spherical harmonic functions, Egs. (6), are motivated by the simplified integral expressi
for W, andyy ., which facilitate development of recursion relationships and evaluation
these functions in Cartesian coordinates (see Appendix A). More importantly, from a cc
putational viewpoint, robust evaluation of the functi@psandG, is readily accomplished
by slight modification of the SMBF recursion relationships [1].
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A useful property of the products,

Qmik(k, B) = Gm(k R)ym (R, )

is that their spatial gradients can be expressed as linear combinati@ysaff different
order and degree,

Qm+1, k-1 Qm-1k-1
VQmi(k, B = [Afd ¢ Qmerk ¢ +[And{ Qm-nk - (10)
Qm+1, kt1 Qm-1 k+1

where the two 3« 3 matrices, AZ,] (see Eq. (13) in Appendix B), aradependenbf

R (though functionally dependent upon, k, and«). The practical consequence of this
property is that derivatives of arbitrary ordét, can be readily developed by recursive
application of this last relation (simply insert appropriée— 1)-order derivatives on the
right-hand side of Eg. (10)). This avoids cumbersome handling of multi-dimensional ch:
products which would otherwise be required if the gradients of the t&g(s R) andy;,

(or Rm+1/2(/<r) andYp) were developed separately.

Finally, the combination®(r) andr?™1y* (r) are bothm-order polynomials in
r. Hence, there is no need to transform to spherical coordinates in order to evaluate t
terms. Simple upward recursion relationships can be developedfpir) and vy, (L)
that entail essentially the same computational effort as evaluating the simpleer
Cartesian moments. This is an important observation. Traditionally, multipole expansi
of the Coulombic potential have adopted either a Cartesian- or spherical-harmonics-b:
framework. Key properties of these two approaches are summarized in Table 1. Opere
with the quantitiesly,, andv,;, results in an approach that combines the relative advat
tages of the pure Cartesian or spherical harmonics representations without forfeiting
desirable properties, as was recently demonstrated by White and Head-Gordon [66]. £
the spherical-harmonics-based approach, multipole expansions to arbitraryhramm
be developed in a methodical manner and the associated multipole coefficients stored
minimal O(M?) cost. However, the square root and circular function evaluations requir
in converting to spherical coordinates are eliminated. Moreover, local-to-local translat

TABLE 1
Comparison of Cartesian- and Spherical Harmonics-Based Multipole Expansions

Cartesian Spherical Harmonics
Translation ofM-order expansionQ(M?3) Translation ofM-order expansionQ(M#)
using generalized parallel axis theorem
Storage foM-order expansionQ(M?) Storage foM-order expansionQ(M?)
No transcendental function evaluations needed At least one square root and one sine
(for Coulombic potential) operation invoked
Generalization to very high order cumbersome Arbitrary-order expansions available using

simple recursion rules

Difficult to develop arbitrary order derivatives Arbitrary-order derivatives developed using
simple recursion rules
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of the multipole coefficients is simply done by recursive application of the binomial the
rem along each Cartesian direction. The total cost to shiftlaorder expansion is then
O(M?), as compared t®(M*) for the conventional approach where the shift is performe
along all three Cartesian directions simultaneously. Theoretically f&t®t?) shifting
procedures can be effected using fast Fourier transforms and warping operations, but 1
methods appear quite complicated, particularly if efficiency for low-order expansionsis tc
preserved [16]. Finally, all spatial gradientsygf, can be written as linear combinations of
Y of different orders and degreen, andk’; no chain product manipulation is necessary
to develop arbitrary-order derivatives. Additional details regarding the derivation of the p
ceding expressions and expressions for the spatial gradients are presented in the apper

3. FAST ADAPTIVE MULTIPOLE ALGORITHM

3.1. Use of the Multipole Approximation in the Fast Algorithm

The basic reason for adopting the multipole decomposition is to expedite evaluatior
the long range influence of a localized collection of chargesSumming over charges,
then from Eq. (7),

e “IR-L,|
an R0 Z%ng(wa)em(m kgmwmk<g Wmk(R)
=> Z Qmk(k. B) B (11)
m=0 k=—m
Bk = ) _ QoG (ko) Wrnk(0,,) 12)

where Qnmk(x, R) is defined in Eqg. (9). This rearrangement implies that the multipole c
efficients, Bk, for the entire group can be computadpriori and independently from
the evaluation point. These coefficients can then be used to approximate the influenc
the group at any well-separated evaluation point satisffgng max(p,). Therefore, to
implement a fast algorithm, one first assembles the interacting elements into a series ¢
erarchical groups using an octree-based decomposition. The multipole coeffiBjgnter

all groups are then computed by direct summation over charged particles and subsequ
used to evaluate all well-separated interactions. Evaluation of the near-field interact
completes the summation procedure.

In the fastimplementation of Coulombic interactions, it is usual to first assemble the m
tipole coefficients upon the finest level (terminal) nodes in the octree by direct summat
of individual charges. The multipole coefficients for coarser level nodes are then develo
from their finer level counterparts by using shifting theorems or so-called inner-to-inr
translation operators rather than by summing over the contained particles. Although
reduces the formal complexity of the multipole construction process @gi log N) to
O(N), it does not procure significant CPU advantages since the construction of multip
coefficients constitutes a small fraction of total computation time which is dominated by 1
near-field evaluations and multipole approximation evaluations. When considering the n
tipole expansions developed for screened Coulombic potentials, the translation oper:
are considerably more complex and computationally expensive. For example, compar
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translation operators have been developed for the imaginary argument exponential ke
exp(—ikr)/r [17, 45, 47]. In the present implementation, the multipole coefficients a
computed individually for each box by summing over individual particles. Examination
the CPU times expended in the multipole coefficient construction process has shown tl
to be insignificant when compared to total calculation times.

A Taylor series approximation can also be invoked to reduce the formal complexity
the algorithm fromO(N log N) to only O(N) (this estimate ignores octree construction
which remaingO (N log N) but usually requires negligible CPU time). The basic idea is
extrapolate or project far-field electrostatic contributions that have been accumulated f
parent group to each of its immediate descendant groups or, if no such groups exist, tc
individual elements contained in the group. Denote by vdztoe relative position between
the centers of a pair of nested groups or between an individual charge and the center c
group it is contained in and consider the evaluation of Eq. (11) at loc&i¢rh, where
IR+ b > max(p,) andb < R. Under these conditions, each of the terms in the expansio
Eqg. (11), can be approximated by a truncated Taylor series,

d 1 32
Qmk(x, R+b) = Qmi(k, R) +h- a_Rka(K» R) + Eb' [@ka(/ﬁ R):| b+ (13)
where the successive gradients are obtained using Eq. (10).

It should be pointed out that in order to preserve the improved convergence behavio
forded by the SMBF-based multipole expansion, the Taylor series extrapolation proced
should be replaced with multipole translation operators which are more efficient (wk
using diagonal forms of these operators [17, 45, 47]) and more accuratfhfos 1. In
the Coulombic case there is a close correspondence between the multipole and Taylc
ries approximations. Both the multipole coefficients and the translation operators use
shift the expansions downward from coarser to finer level boxes can be formally deri
from a multi-dimensional Taylor series representation of thekiernel. For the screened
Coulombic potential, the Taylor series converges very slowly frs> 1, which motivated
the SMBF-based multipole expansion in the first place. For similar reasons, transla
operators for SMBF-based multipole expansions are likely to converge more uniforr
with « than the Taylor series extrapolation procedures described above. Such transle
operators can be derived using the same procedures developed for FMM solutions tc
3D Helmholtz [17, 45, 47]. This has not yet been implemented, however, and the curt
Taylor series-based extrapolation may exhibdependent convergence behavior, thougt
in the cases considered, the actual errors have remained quite small. An option is avai
to dispense with the Taylor series extrapolation and perform the analysis using only
multipole approximation applied to the individual evaluation points. The resulting opel
tion count forN particles is therO(N log N), which still constitutes a “fast algorithm,”
and the error can be fully controlled by adjusting the order of the multipole expansion.
practice, the computation time for tli&(N log N) algorithm increases by approximately a
factor of 2 to 4.

3.2. Construction of Groups

The final remaining issue is how to form the groups and distinguish between near- :
far-field interactions. In this regard, the fast algorithm closely resembles established
adaptive multipole methods using octree decompositions. Beginning with a single c
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encompassing the domain of interest, particles are inserted in succession. At any poin
octree consists of a hierarchy of cubes or boxes obtained by recursively dividing the orig
cube. As a new particle is inserted, one first conducts a downward search through the o
to establish the terminal (smallest) bolx, containing the particle. If, upon addition of the
new particle, the total number of particles within this cube exceeds a specified thresh
the cube is divided into eight “child” boxes and the particles containélol ame reassigned
to the newly created boxes. This procedure continues until all particles have been inse
Five types of interactions are possible between a pair of boxes according to the ¢

binations of multipole and/or Taylor series approximations that may be invokeéd.iff
a separation parameter used to distinguish between near-/far-field rediarsjd; are
the side lengths of the source (inducting) and field (observation) boxes, respectively;
Dss is the separation distance between the source and field boxes (i.e., the smallest
tance between the perimeters of these boxes), then five different interaction types ma
distinguished:

() direct interaction: interactions between particles in these boxes must be sumr
directly;

(i) multipole expansion onlyL sds < Dss < Lsds;

(iii) Taylor series expansion only:¢ds < Dgf < Lsds;

(iv) both multipole and Taylor series expansiobs; > Ls max{ds, ds};

(v) nointeraction: the inducting effects were already contained within the interactio
between ancestors of the source and field boxes.

Figure 2 depicts these interaction types for the dage 1.

3.3. Overall Assembly of Fast Energy and Force Calculation

The fast computation of the screened Coulombic en&lgyor a collection ofN charged
particlesj, is assembled as follows. First, an octree is developed about the configuratiol
charged particles and used to define the hierarchical groups—each group is composed
particles in a particular box or cell of the octree. The pointer structures needed to iden

5 5
1
4l 4
5
212
2] 4
1 |F=1
3 1 5
1]
3 3 3 5

FIG.2. Two-dimensional example illustrating the five types of interactions with a field Bonly terminal
(leaf) boxes are shown ad = 1 is assumed. The letters correspond to the interactions described in the text (¢
Section 3.2).
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the particles contained in a given box are also developed at this stage. Next, the multij
coefficients,Bn, for each group are computed according to Eq. (12). This completes t
“upward” pass of the fast evaluation process.

The downward pass proceeds differently according to whether Taylor series extrap
tions are invoked or not during this stage. The search is simpler if no Taylor series ex
polations are invoked. In this case, the total screened Coulombic energy is evaluate
expressing

1 N
Ue = % IZ:; G Ui (14)

and decomposing

Ui = Zq' ~ y 98 ZZ 3" Quidc, R)Brdjg. (15

sl iAigen jg m=0 k=—m

whereN; is the set of pointsj, considered near-field to point, andjg are the far-field
groups containing the remaining poinjsz N;, whose contributions are evaluated using the

multipole approximation. Forces,; = —(qi /¢)du; /d R;, may be similarly decomposed:
e “Mi (1 + «r
6 > 3 (3 <) g, - RJ)——ZZ Z V Quik(ic, B)(Bmid jg
J;él JEN; SI' jg m=0k=-m
(16)

(note that the coefficient®8, are treated as constants during the differentiation). Th
evaluation of each; andf; then entails a top-to-bottom search through the octree. Startil
with the root cell encompassing the entire domain, descendant jcglle recursively
searched to see whether a multipole approximation may be applied. If so, the multif
evaluation is made and the search through further descendants pruned at this cell. Other
the search continues through the descendarts tifno further descendants exist, then the
contributions from the individual particleg, in the cell are near-field and must be evaluatec
directly.

When Taylor series extrapolation is invoked, a pre-order traversal [50, 54] of the oct
is carried out which ensures that every cell in the octree is visited before its subdivided
scendant cells. For each visited cigl,the tests of Section 3.2 are applied and the necessa
near- and/or far-field interactions carried out. If the cell contains further descendants, t
the accumulated contributions tgy and f;y (Egs. (15) and (16) evaluated at the cente!
of cell, ig) are transferred to the centers of these descendant cells using the Taylor s
extrapolation, Eq. (13). Otherwise, if céj is terminal and has no descendants, then th
Taylor series extrapolation is applied to the individual particles contained ingcéllhe
remaining near- and far-field interactions for these individual particles are then carried «
thus completing the evaluation of and f;.

4. RESULTS AND DISCUSSION

4.1. Simple Test of the SMBF-Based Multipole Expansion

In order to assess the accuracy of the new SMBF-based multipole expansion, a sir
model problem containing a pair of unit charges is considered. The source charge is pl:
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at unit radiusys =1, from the origin and the multipole coefficients about the origin ar
computed. The fourth-order multipole expansion is then evaluated at a series of field pc
located at different radial distances from the origin, For each such radius;, the field
point vector is rotated (i.e., the spherical angles are varied) and the maximum relative
ctrostatic energy error,

Emuttipote(r 1) — e " /r }’ (17)

Emax(r f) = T%X{ 1/r

is recorded. Here, = |R; — Rs| anda, 8 are the spherical angles of the field point. Note
that the electrostatic energy error is normalized jy the Coulombic potential), which is
more useful at large since the screened Coulombic energy is then effectively short-ran
and becomes negligible beyond- 7/« .

Itis also of interest to study what transpires when one retains the conventional multip
expansion for the Coulombic potential and simply scales this approximation by exp).
Referring to this as the “scaled Coulombic” approximation [20], one anticipates low errc
at both sufficiently small and sufficiently large valuescof

The variation ineyax With ry and« is depicted in Fig. 3. Note that the results from
the “scaled Coulombic” approximation (Fig. 3a) and SMBF-based multipole expansi
(Fig. 3b) are plotted on identical scales. As shown in Fig. 3a, for the “scaled Coulomb
approximation, the relative electrostatic energy error is seen to increase rapidtyamigto
persist well into the far-field regiar > rs. The maximum relative electrostatic energy errot
occurs roughly in the range®< « < 0.7; beyond this range the electrostatic energy erro
decays rapidly withr ;. In contrast, the results obtained using the SMBF-based multipo
expansion exhibit much tighter energy error control akdkee Fig. 3b). It is evident that
all relative electrostatic energy errors lie below the curve corresponding=t0 so that,
unlike the previous case, the relative electrostatic energy error reduces monotonically
bothr; and«x. A corollary is that useful error bounds can be developed for the prese
approximation based upon the well-known results for the Coulombic case. In particu
the estimate for the maximum error in a pure Coulomidieorder multipole expansion,
emax~ (rs/r1)M+1, carries over to the SMBF-based multipole approximation. Though n.
shown here, it can also be demonstrated that the maximum relative electrostatic en
error decays rapidly with the order of the multipole expansidn,which can therefore
be used as means of controlling overall solution tolerance. The improved and predict:
convergence behavior of the SMBF-based multipole expansion fordll favors its use for
the calculation of screened Coulombic electrostatic interactions in large molecular char
systems.

4.2. Performance and Accuracy of the Fast Adaptive Multipole Algorithm

The computational performance of the new fast adaptive multipole algorithm (impl
mented in FORTRAN 77) was examined for several model finite systems involving bc
uniform and nonuniform charge distributions and different salt concentrations. The s
tems studied include interwound, knotted, and lobed DNA configurations [51, 52], a
open linear polyelectrolyte chains containing up to 10,000 charged particles. Also, a fe
centered-cubic lattice configuration of unit charges with a fixed reduced density of |
was considered. Finally, computational studies involving up to 103,823 charged partic
randomly distributed inside a cube were performed.
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FIG. 3. Variation of the maximum relative electrostatic energy eegy, (defined in Eq. (17) of the text), with
separation ratia;; /rs (r ¢ andrs are the distances from the origin of the field and source positions, respectively
and Debye-tdtkel screening parameter,using (a) the “scaled Coulombic” approximation and (b) the four-order
(M =4) SMBF-based multipole expansion.

Unless otherwise stated, all the results reported below were obtained using the follow
fixed input parameters: the maximum number of particles per terminal node in the oct
N. = 12 (nodes that contain more th&l particles are subdivided into “child” nodes); the
box separation parametér; = 1; and the order of the multipole expansidh= 2.
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FIG.4. Comparison of the CPU time (in seconds) as a function of the number of charged particles involve
the calculation of the electrostatic energy and forces of an interwound DNA chain and open linear polyelectrc
chain (a) and fcc lattice and random configuration of charges (b) at 0.1 M NaCl, using the direct and fast summ:
methods.

4.2.1. Timing. Timings for the calculation of the Yukawa energy and forces using bof
directand fast adaptive multipole algorithm were obtained using a 100-MHz single proces
(R40000) SGI workstation. Because of the lengthy computation times, CPU estimates
direct summation applied to systems involving more than 11,000 particles were estim:
by extrapolation.

Figure 4a compares the CPU time required to compute the electrostatic energy
forces for open linear polyelectrolyte chains and supercoiled polyelectrolyte DNA cha
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at 0.1 M NacCl using the direct and fast summation methods. The computational merit
adopting the fast over direct summation algorithm are clearly evident. Examination of
curves confirms that the direct summation computation exhibits the expected quadratic
complexity, whereas the CPU time of the fast summation method scal@ghis'#) and
O(N™02) for the open chains and supercoiled DNA chains, respectively. The nearly line
scaling of the fast method is essentially independent of both the assumed chain configur:
and salt concentration. Figure 4b reports CPU times for the fcc and random configura
of charges at 0.1 M NaCl. The asymptotic scalings obtained with the fast method are r
O(N198) for the fcc lattice configuration an@(N*1#) for the random charge distributions.
These estimates are very similar to those obtained for the polyelectrolyte chains and con
that the asymptotic CPU scalings of the fast method are essentially independent of
concentration and charged particle configuration.

In the application of fast summation methods, the leading constant in the asymptotic C
behavior also assumes practical importance and is found to be configuration-depen
Figure 5 shows the relative computation speedup obtained when using the fast algor
in lieu of the direct summation method. The results reflect the dependence upon the
dimensionality of the structure—the highest speedup factors are obtained for the essen
chainlike arrangements (e.g., polyelectrolyte molecules) and the lowest values for the
umetric charged particle distributions (e.g., fcc lattice and random charge distributior
The crossover point where the fast method proves faster than the direct summation me
is ~200 for the polyelectrolyte chains are2000 for the fcc lattice and random particle
distributions. Greengard and Rokhlin [24] observed similar behavior for the FMM appli
to Coulombic potentials, where the crossover points occurred using 100 and 1000 parti
for the 2D and 3D charged particle systems, respectively. These results are qualitati
explained by noting that the number of near-field interactions is proportional to the nu
ber of surrounding boxes that are populated by particles. Fordimensional charged

100 - ———

speedup

e open linear polyelec. chain
interwound DNA

& knotted DNA

- -4--FCC config.

- —v— random config.

0.1
100 1000 10! 10°

number of charged particles
FIG. 5. Plot of the speedup of the fast method relative to the direct method versus the number of char

particles in different charged systems: interwound DNA, knotted DNA, open linear polyelectrolyte chain,
lattice, and random configuration of charges at 0.1 M NacCl.
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particle arrangement (wheke2=1, 2, and 3 refers to essentially chainlike, surfacelike, anc
fully 3D patrticle distributions, respectively), the number of such near-field boxes is roug|
(2Ls + 1)P. This agrees with the observed one order of magnitude disparities in spee
for the one- and three-dimensional structures computed usjagl. For essentially 2D
structures associated with solvated biomolecular surfaces in BEM formulations of the lin
Poisson—Boltzmann equation one anticipates speedups that are roughly one-third thos
the 1D structures considered here.

4.2.2. Accuracy. The advantages realized in terms of computation time when adopti
the fast algorithm must be weighed against the accompanying errors incurred in trunce
the infinite multipole expansion. It is important to point out that this truncation error h
two properties that must be considered in practical applications. The first is the magnit
of the error, which is of direct and obvious importance to the user when interpreting resi
and assessing overall accuracy. The second property, which is not dealt with here, con
the discontinuous behavior of the error with respect to configurational changes. Cons
a deterministic optimization process where a minimum energy configuration of, say
supercoiled DNA chain is sought under the simultaneous action of elastic and electros
forces. During the optimization process, the locations of the charged patrticles chang
that they will be reassigned to different cells in the octree (the octree itself will usua
be regenerated periodically). The multipole approximation to the long-range influence ¢
charged particle that has been reassigned to a new cell changes discontinuously, whic
pose difficulties for gradient-based optimization algorithms. Also, energy drifts obsery
in a molecular dynamics simulation of a 36,000-atom protein—~DNA—water system, whi
employed a high-order FMM algorithm for the Coulombic forces, were attributed to simil
discontinuous behavior of the multipole expansion approximation [5]. IncredéingL s
can reduce these discontinuities, but this is an inefficient way to proceed because nume
smoothness rather than absolute error requirements then dictate the order of the mult
expansion. To our knowledge, this problem has not been addressed, and the ability to per
deterministic optimization and molecular dynamics using low-order multipole expansic
remains an important and useful objective.

In the present study, the dependence of the electrostatic energy and force errors upo
concentration and various computational parameters, includjrrgndM, is assessed. Ac-
curacy is measured in terms of the relative electrostatic energy @eggiox— Eexacd / Eexact
and the relative root-mean-square (rms) electrostatic force #fsgiox — fexactl/ [l fexactl,
where Eapprox IS the approximate electrostatic energy using the fast metBegy: is
the exact energy obtained by direct summatipsrox and fexact are the (N)-vector of
concatenated charged particle forces computed using the fast and direct summation
nigues, respectively; anp- || is the Euclidean norm.

Table 2 presents the electrostatic energy and force errors of several charged systems |
broad range of salt concentration. As is evident from Table 2, the electrostatic energy err
at most 0.002 for all charge configurations considered and remains essentially indeper
of salt concentration. The electrostatic force errors (Table 2) are also insensitive to
concentration up to 0.01 M NaCl, but are at least an order of magnitude larger than
electrostatic energy errors. The dependence of the electrostatic energy and rms force
upon system size at fixed salt concentration (0.1 M NacCl) is shown in Table 3. The variat
of energy error with system size is configuration dependent, but much less so for the
force error.
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TABLE 2
Electrostatic Energy Error and Root-Mean-Square (rms) Electrostatic Force Error for
Different Configurations of Charged Particles under Varying NaCl Concentrations

Configuration NaCl concentration (M) Energy error rms force error
Open linear 0x10° 3.7x 10 9.4x 1078
polyelectrolyte 10x 10+ 2.0x 10 8.9x10°°
chain 10x 1072 1.9x10* 48x 103
1.0x 101 46x10° 1.3x10°3
1.0 10x10° 59x10°
Interwound DNA 10x 10°® 6.7 x 107* 1.8x101
1.0x10* 51x 10 1.9x101
1.0x 102 3.4x 10 23x 10!
1.0x 101 21x10* 1.2x 101
1.0 11x10° 1.3x107?
Random charge Qx10°° 2.8x 10 1.2x107?
distribution inside 0x10* 3.0x 10 1.2x107?
acube 10x 1072 1.6x10* 15x107?
1.0x 101 1.0x10° 2.2x 1072
1.0 74x10* 7.7x10°3
Face-centered-cubic .Ax 106 2.4x 107 1.2x107?
lattice 10x10* 27x10* 1.3x10°?
1.0x 1072 3.3x10* 1.3x107?
1.0x 101 3.1x10° 1.9x107?
1.0 20x 102 5.0x 1072

TABLE 3

System Size Dependence of the Electrostatic Energy Error and Root-Mean-Square (rms)
Electrostatic Force Error for Different Configurations of Charged Particles at 0.1 M NaCl

Configuration Number of charged particles Energy error rms force erro
Open linear 500 P x10° 6.8x 10
polyelectrolyte 1,000 7 x10° 7.3x 10
chain 2,000 2x10° 1.1x10°3
5,000 47 x 10°° 14x10°3
10,000 46 x 10°° 1.3x 102
Interwound DNA 500 Hx 10 3.0x 1072
1,000 27 x 1074 3.7x 1072
2,000 28 x 1074 8.0x 1072
5,000 22 x 104 10x 10?1
10,000 21 x 1074 1.2x1071
Random charge 500 Fx 10°° 1.6x107?
distribution inside 1,000 Bx10* 1.7x107?
acube 2,000 ax10* 2.0x107?
5,000 10x 103 1.9x 1072
10,000 10x 1073 2.2x 1072
Face-centered-cubic 500 A3k 1074 9.7x 107°
lattice 1,000 FHx 10 11x10?
2,000 13x 10 1.3x 1072
5,000 21 x 10 1.6x1072

10,000 31x10° 19x 1072
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There are two possible reasons for the relatively high electrostatic rms force errors. F
the net electrostatic forces are inherently more sensitive to errors because their evalu
involves cancellation of equal and opposite contributions. Consider, for example, a circt
arrangement of equal charges and evaluate the net force at a partatated at azimuthal
angled =0. From symmetry the force component in the circumferential directigns
zero and only a radial componerit, remains. Nowf, can be decomposed into two com-
ponents.fy,. and fyg, representing the respective contributions of particles located betwe
azimuths,0 € [—m, 0] and6 € [0, +]. For large particle counts, one can show that the
magnitudes of the two component, and fyg, are much larger than the net residual
forces, f, and fy, so that multipole errors that are small comparedgioare nevertheless
large compared td, and f,. The second reason for higher force errors is that seltting 1
leads to slowly converging multipole series. This is discussed further below.

The order of the multipole expansioM,, and the separation criteriohs, are the primary
parameters available for controlling error. In its current form, the software accommode
arbitrary-order multipole expansions. However, the Taylor series extrapolations use
project accumulated energy and force contributions from coarser to finer level cells
limited to second order. For fast calculations of systems governed by Coulombic potenti
the error is controlled by the minimum expansion order adopted in the multipole and Tay
series approximation, and it is therefore usual to use the same order in both approximat
This also applies to the DebyedEKel interactions, as can be inferred from the results i
Figs. 6a and 6b depicting the energy and force errors for the random distribution of 8
charged particles. Results were obtained using: (i) both multipole and Taylor series app
imations of orderM = 2; (ii) a multipole expansion of ordeM =4, and a second-order
Taylor series extrapolation; (iiiM =2 multipole expansions alone; and (iM) =4 mul-
tipole expansions alone. When both multipole and Taylor series expansions are empl
(cases (i) and (ii)), convergence stalls fdr> 2. This is dramatically clear in Fig. 6b, where
increasingM from 2 to 4 has practically no effect since the overall rms force error is no
controlled entirely by the order of the Taylor series extrapolation, which is 2 in both cas
When only the multipole expansion is employed (cases (iii) and (iv)), the errors redt
with M in the predictable way with at least a fivefold reduction in the rms force error whe
doubling the multipole expansion order. Similar behavior in the energy and rms force ert
is obtained for the other charge configurations, which suggests the need for higher o
Taylor series expansions accompanying same order multipole expansion approximat
On the other hand, the use of higher order multipole expansions increases the cost invc
in their evaluation, and it remains unclear at what point (or, rather, for which proble
size) the combination of higher order multipole and Taylor series expansions with nez
O(N) asymptotic behavior outperforms tlg N log N) scalings procured using multipole
expansions alone.

The rms force errors recorded in Fig. 6b can be rapidly reduced by increasing the
separation parametdrg. Indeed, careful examination of the error bounds associated wi
the multipole expansion for the Coulombic potential [49] reveals that although settiad
ensures convergence to the exact value, the convergence rate can be slow, particularly
theL ., normis usedto define the distanBg, between a pair of source and field boxes. Thi:
is because the error bounds are properly formulated in terms of minimum enclosing sph
rather than cubes, which implies that the maximum errors in the multipole expansion fc
cell with sided evaluated at distand@from the center behave &g'3d/2R)M+1 rather than
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FIG. 6. Dependence of the (a) electrostatic energy error and (b) electrostatic rms force error of the ranc
distribution of 8000 charges, over a broad range of salt concentration, on the order of the multipole expansior
when only theM-order multipole expansion is invoked or bd#h-order multipole and second-order Taylor series
expansions are employed.

(d/2R)M+1, ForLs=1, d/R < 2/3 and so the truncation erre10.577+. ForL¢s =2, the
error obeys a more favorable336"+1 behavior.

Figure 7 shows the dependence of the electrostatic energy and force error for the ran
distribution of 8000 charged particles uplon As expected, both errors decrease Wigtand
order of magnitude reductions are observed at all salt concentrations when increrhgntin
from 1 to 2. Similar behavior is observed for the other charge configurations. The improy
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FIG. 7. Dependence of the electrostatic energy and rms force errors for the random distribution of 8
charges on the separation criteridn, over a broad range of salt concentration.

accuracy is accompanied by longer calculation times—incredsjtigpm 1 to 2 typically
incurs a factor of 2 to 3 increase in computation time. These results show that consider
benefit in terms of reduced computation time and enhanced accuracy can be derive
directing careful attention to the tests (and distance norms) used to distinguish betw
near- and far-field interactions. Close scrutiny of these tests is imperative when conside
interacting elements of finite size (e.g., boundary elements) since the multipole expan
may not converge at all unless the element size is accounted for. The authors are curr
developing tests based upon minimum enclosing spheres.

5. CONCLUSIONS AND FUTURE WORK

A new multipole expansion using spherical modified Bessel functions has been de
oped for the rapid calculation of electrostatic interactions with implicition screening. A k
advantage of the SMBF-based multipole expansion for the Dehyekefikernel is that the
number of multipole terms necessary to attain a given accuracy is essentially indepen
of k. Detailed studies involving a single source particle show that the maximum relat
electrostatic energy error incurred bynorder multipole expansion of the Yukawa poten-
tial is bounded above by the error of the equivalent multipole expansion for the Coulom
potential. Also, the relative energy error decreases monotonically with both the distanc
the evaluation point,; > rg, and the Debye screening parameter,

A fast adaptive multipole algorithm was developed by combining the new SMBI
based multipole expansion with an octree-based hierarchical grouping procedure.
algorithm is shown to achieve neany(N) scaling in the computation of the screened
Coulomb energy and forces irrespective of charged particle configuration and fixed
concentration. The leading constant in the asymptotic CPU behavior is influenced
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several parameters, including the configuration of charged particles. In particular, an
der of magnitude difference in CPU times is observed when considering essentially
chainlike structures (e.g., polyelectrolyte chains) compared to fully 3D arrangements s
as fcc lattice and random charge configurations. The accuracy in the screened Cou
bic energy and force computation can be effectively controlled by adjusting the nu
ber of terms retained in the multipole expansidh, and the box separation parameter
Ls.

Recommendations for future research efforts should emphasize both the theoretica
pects of the SMBF-based multipole expansion and the practical implementation issues.
example, fast summation algorithms developed for pure Coulombic potentials make ex
sive use of translation theorems to shift multipole expansions between different locatic
Though comparable results can be developed for the multipole expansions of scree
Coulomb potentials (such results are derived from expressions for titeidgxp/r kernel,
see Refs. [17, 45, 47]), the theory is not as well developed and the shifting operations
considerably more expensive. It would also be of both theoretical and practical interes
conduct a more rigorous error bound analysis of the new SMBF-based multipole expans
Tighter error bounds can be employed to produce more efficient fast multipole algorith
[42]. The new fast adaptive multipole algorithm is amenable to parallel operation and wi
is presently being pursued by the authors to develop a parallel version of the method u
the MPI communication protocol.

Coupling the present fast adaptive multipole algorithm to existing MC and MD codes w
allow simulation of large-scale systems, such as weakly charged polyelectrolyte chains
polyelectrolyte supercoiled DNA, whose electrostatic interactions can be well describec
the Debye—Hckel potential. Finally, the authors are currently involved in incorporating th
fast algorithm into a boundary element code to solve the linear Poisson—Boltzmann eque
for large solvated biomolecules. In boundary element methods, storage considerationstr:
than CPU concerns usually impose limits upon problem size, and a major reason for u
a fast summation algorithm is to alleviate storage as well as CPU costs. Results from
endeavor will be presented elsewhere.

APPENDIX A

Spherical Harmonics Expressed in Cartesian Coordinates

It is well known that the products'Y,,,, can be expressed as multi-dimensional polyno
mials in Cartesian coordinates [1, 41]. To develop such expressions as well as relation
the spatial derivatives of such functions and identities between spherical harmonics of
ferent orders and degree the following result proves useful. Begin by defining the comy
quantity,

W = z+i{xcosu+ ysinu} = z+i{qe" + pe™!}, (A.1)

where

_XHiy X —ly
2 T2

= X=p+q y=i@-p); (A.2)
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then the integral

27

im .

Wom = —— [ wngmu A.

nm Znn!/ e"du (A-3)
0

is related to the products

2 DH(n—m)! !
F™am = Com%nm: ~ Com = \/( N+HO=MIMFEME A 44, b)
4
whereYnn is the normalized spherical harmonic function.
Noting
7 or, k=0
/ék“duz{ ’ o (A.5)
0, k0
0
Eq. (A.3) reduces to the simple form
[(n—m)/2] n—m—2k k m+k
z q° (—p)
Yom = — A.6
nm Z (n—m—=2k)!k! (m+k)!’ (A.6)

k=0

where ] denotes the rounded down integral component of the argument. For example

Ygpo=1 (A7a)
Vig=2, Yy = — (X _;Iy) (A7b, C)
1 1 1 iy)?
Wy = Ezz_ Z(X2+y2)’ Wy, = Ez(—x—iy), Wyy = % (A.7d, e, 1)

Expansions of arbitrary orde, can be developed using Eq. (A.6). But this impli2eN?®)
operations sincé(N/2) multiplies are required for each of tt@(N?) multipoles. To
reduce the operation count ®(N?) one employs recursion relationships developed b
considering the integral relation, Eq. (A.3), and integrating by parts:

27
im i
\Ijnm = /Wnelmudu
2n!
0

2r
im
_ > Iimnl {[WneimU](Z)n _/an—l(_qeiu + pe—iu)eimudu}
JT :
0

1
= _a(q\ljnfl,m+l + p"pnfl,mfl)- (A-8)

Another relation can be developed by noting
m 27-[
[ . , ,
Upm = —— /(z+i{qe'u + pe U hwr-lemudy
27n!
0

1
= H(Z‘I’n—l,m + qq’n—l,m+1 - p‘l"n—l,m—l)~ (A,9)
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Combining the last two relations yields
N+ MWpy = Z\I"n—l,m - 2p\Ijnfl,mflv (A.lO)

which is applicable for all @ m<n — 1. Form=n, simply use¥,, = (—p)"/n!; to start
the recursion, us@go =1 and¥g =z, and finally, form=0, use¥, _; =—W ;.

In the fast summation algorithm, multipole coefficients are first computed explicitly upc
the finest level boxes. Coarser level coefficients are then obtained from finer level one:
recursive shifting of the coefficients from one box center to another. Such shifting rules
readily developed for the Coulombic case using Eq. (A.3). To evaluate the multipoles ak
the shifted poin{p’, q’, Z) < (p+a,q+ b, z+ ¢), consider

[“I’nm]{p”q’.z/} —_ /{W + C + | (béu + ae—lU)} elmu dU (A.ll)

27Tn'

The term in brackets can be expanded into powess bfandc using the binomial theorem
which results irO(N?3) terms, but which can be rearranged to a form involving @?)
terms so that for afN-order expansion@(N?) multipoles) a total ofO(N*) operations
would be required. A better way is to apply the shifts algng) and thenz separately,
resulting in

[(m+n)/2]

a)k
[Woml(p.a.z = Z ( k) [Yn-km-kl(p.g.2 (A.12a)
k=0

[(n—m)/2]
[Woml(p.q.2) = Z *I[‘I'n—k,erk]{p/,q,z} (A.12b)
k=0 k!

3

—m

‘I’n—k,m]{p/,q’,z}v (A.lZC)

7\_‘0

[Waml(p.a.2)
k=0

which now require onlyO(n) operations per multipole per shift for a total 6f(N3)
operations. These expressions are much simpler than traditional shifting expression:
spherical harmonics. However, they are not optimal. A complete shift of all multipoles c
in fact be accomplished in oni® (N?) operations using the discrete fast Fourier transforn
[16], although the operations are algebraically more involved and require modificatior
maintain efficiency for low-order multipole expansions.

The preceding expressions now allow construction of multipoles for pure Coulombic
well as (see below) screened Coulombic potentials. Next, consider the evaluation of
multipole expansion at an observation point. This requires evaluation of the fungtigns
defined in Eq. (A.13), which are linearly related to the prodigt/r "** and hence to the
combination¥,,,/r >*1. Hence, the recursive evaluation procedures availablé fgrare
readily applied to evaluation oF,, also. Expressions for the spatial gradients required i
Taylor series expansions are obtained from the integral relation.

/ w-bgmu gy (A.13)
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Yom 2n+1 2n+1
LU , Chm = Cn—m = = . (Al4a,b
rn+l nmY/nm nm = nem \/47r(n —m)!(n+m)! ~ 47Cpm ( )

Comparing Eqgs. (A.4) and Egs. (A.14) reveals

1 Cnm\y _ (n=—m!(n+m)!

Yom = m% nm = r2ntl Yim. (A.15)
From Eq. (A.13), the gradients
a/op el Ynrim-1
n!(n + 1) (n+2) |mu
9/0q | ¥nm = —W W~ et du=—| —¥nt1m1 |, (A.16)
9/9z 1 Vniim
or using the definitions fop andq, Eq. (A.2):
1//n-k—l,m—l 1 1 0 -1
Vam=[Al { Yniim ¢ [A] = ~3 i 0 il. (A.17a, b)
Yniimrl 0 2 O

Hence, the gradient is simply a linear combinationyef.1 m+j. Moreover, because the
coefficients in A] are independent oR, higher order derivatives are easily obtained a:
linear combinations of lower order ones.

In Appendix B, another expression for the gradient is required which is derived as folloy
Following the same procedure used to derive Eq. (A.17) one obtains

lIJn—l,m—l 1 1 0 -1
Vo =[Bl{ Ynam ¢ [Bl=—2|i 0 i|. (Al8ab)
Wn_1mt1 0 -2 0

which upon using identity, Eq. (A.15) yields

1 1/fn—l,m—l
V(¥nm) = ﬁ[B][ Nnml] Yn-1m —(2n+ 1)

Yn—1m+1

1/fnm

(A.19a)

[Nom] = diagi(n+ my(n+m—12), (n+m)y(n —m), (n—m)(n —m—1)}. (A.19b)

Recurrence relationships ¢, can be derived in a similar manner as¥gy,,. Similarly,
shifting rules fonyn, are developed by expanding the integral representation about a shif
center. Now, however, one obtains an infinite series. As before, multipoles about the shi
point(p’, q, Z) < (p+a, g+b, z+ c) are obtained by performing three successive shift
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along each Cartesian direction. Thus, for example,

2

| . .
[an]{p’.q,z] — n_ /(W+ iae—m)f(nJrl)emu du

27im
0
| 2 x k ; iu K
n! n+4 lae— .
= w0+ —1)k dmug
Znimo/ g( ) k W u
— (—a)
=Y 0 Wnmdinga- (A.20a)
k=0
Similarly,
[Wonlipa.a =D 1 ¥nikmidip.az (A.20b)
k=0
— (=0
[Voml(p.q.2) = Z T[lﬂmk,m]{p',q',z}- (A.20c)
k=0

The downward pass of the fast summation process may be formulated either in term
a succession of Taylor series extrapolations from coarser to finer level box centers or
as shifts in the expansion products. The former employs repeated application of the rele
givenin Eq. (A.17), which, assuming that all derivatives to ofdeare retained in the Taylor
series expansion, requir€x N°) operations (this follows since there ax¢ terms in the
Taylor series expansion of each of e + 1) (N + 2)/2 multipole coefficients); the latter
applies a truncated version of relations given in Eq. (A.20), which er@4il¢®) operations
assuming the series are truncated atihk term. Clearly, the shifted expansion exhibits
more favorable computational complexity for large-order expansion; unfortunately, itisr
easily applied to the screened Coulombic potentials of interest here and at present re
Taylor series expansions are invoked.

APPENDIX B

Application to Screened Coulombic Kernels

Implementation of the SMBF-based multipole expansion requires manipulation of t
productsQnk defined in Egs. (9). It is somewhat easier to proceed by first deriving tt
required relationships using the spherical (unmodified) Bessel functions. The correspon
expressions for the SMBFs can then be obtained by appropriate substitutions of imagil
arguments. Consider the prod06tn¢n (r), wherez, (r) is any of thereal spherical Bessel
functions. To expedite computation, it is useful to establish recurrence relations for
gradients of these products (note that the products themselves are most efficiently proc
by using the recurrence relations 4y, and¢z, separately).

To derive such a relation, first define

Phm = Vol ") = Yaméa(A) = ComPlm: (B.1a, b)
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Also, the following identities for spherical Bessel functions are required:

d 2n+1
dx (Xn+1§n(x)) = Xn+1§n—1(x), » &n = fn-1+ Cnya- (B.2a, b)

From these relations,

R
V(pgm) = rn+1§nVan+)\anrn+1§nflr
n+2 R
kZ +1({n+l+§n 1)V¢nm+)\wnmr nHl {n 1* (B-3)

Next, using identies given in Egs. (A.17) to (A.19),

Ynt1m-1 Yn-1,m-1

1
(g1 + Z—D) Vbam = Snpal Al Yneim o+ fn—lﬁ[B][ Noml ¢ ¥n—im

Yn+im+1 ¥n-1m+1
— 2N+ 1Dy —0 ‘/f”m R, (B.4)
which when substituting back into Eq. (B.3) produces
Ynrim-1 Yn-1m-1
V(pﬁm) ~“on+1 [AIS Ynitm ¢ M™%+ [BIINaml 8 Ynoim ¢ M"on1 |
1pn+1,m-~-l 1pn—l,m-~-l
(B.5a)
or
Phiim 1 Ph-1m-1
v(pﬁm) = n+1 pr};+l.m + [Nnm] _pé—l,m (B-Sb)
A A
pn+1,m+1 pn—l,m+1
(note the negative sign fcp,ﬁfl,m). Forn=m=0, use
AR (2 10 1| (Y1 Pi_1
Vpgo=Véo=—-——t=—dtr5|i 0 i V1o ¢ =AAIS Pio - (B6)
0 2 O Y11 Pi1

which is the same as Eq. (B.5b) but dropping the last term. Fortunately, the coefficie
and matrices are all independent of coordinates, thus greatly facilitating constructior

higher order gradients. Equation (B.5b) agrees with Eq. (7.2.32) in Ref. [41] except for
derivative with respect ta, which reads

— A
B*Z(Ynmé’n) = m{(n + m)Yn tméh—1 — (N —m+ 1)Yn+l mén+1}, (B.7)
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To develop analogous expressions for tinedifiedspherical Bessel functions, use

N o T, .
Kni1/2(2) = [ 5. Knsa2(2) = =510 (12). (B.8)
Hence, setting. = i«, substituting
(1) . 2 ~
ta(Ar) = hW(ikr) = — o Knea2(er), (B.9)
defining
~ s . .
G = Yiorl ™ Knga/(r) = =i prty, (B.10)
and inserting into Eq. (B.5), one obtains
. Ont1m-1 Oh-1.m-1
V(qgm) = on i l[A] Ohiem ¢ — [Noml § —Of_1m ) (B.11)
qg+1,m+1 qg—l,m-ﬁ-l

which is identical to Eqg. (B.5) except for the reversed sign befdkg,]. Again, the last
term is discarded for the case; m=0.

Finally, bothp},, andgy,,, exhibit singular behavior whenor « — 0, and it is preferable
to operate with the products.Tpt.) and "t1qX,) respectively, which remain well
behaved for alk or ¥ providedr > 0. The latter product is related to the te@am(x, R)
defined in Eq. (9):

m-1-3-2n—1(Q5)"

kMg, = 5 (B.12)
Substituting into Eq. (B.11) shows
Qs 2 Qh-1ma
VQim = [AT] Kﬁ+1,m - m[Nnm] —K heim ¢ |- (B.13)
n+1,m+1 n—1,m+1

where [A*] is the matrix, [A], with all elements replaced by their complex conjugates.
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